82 research outputs found

    Decentralized approach for translational motion estimation with multistatic inverse synthetic aperture radar systems

    Get PDF
    This paper addresses the estimation of the target translational motion by using a multistatic Inverse Synthetic Aperture Radar (ISAR) system composed of an active radar sensor and multiple receiving-only devices. Particularly, a two-step decentralized technique is derived: the first step estimates specific signal parameters (i.e., Doppler frequency and Doppler rate) at the single-sensor level, while the second step exploits these estimated parameters to derive the target velocity and acceleration components. Specifically, the second step is organized in two stages: the former is for velocity estimation, while the latter is devoted to velocity estimation refinement if a constant velocity model motion can be regarded as acceptable, or to acceleration estimation if a constant velocity assumption does not apply. A proper decision criterion to select between the two motion models is also provided. A closed-form theoretical performance analysis is provided for the overall technique, which is then used to assess the achievable performance under different distributions of the radar sensors. Additionally, a comparison with a state-of-the-art centralized approach has been carried out considering computational burden and robustness. Finally, results obtained against experimental multisensory data are shown confirming the effectiveness of the proposed technique and supporting its practical application

    Ground-based ISAR imaging of cooperative and non-cooperative sea vessels with 3-D rotational motion

    Get PDF
    Includes bibliographical references (leaves 175-188).Inverse Synthetic Aperture Radar (ISAR) images of sea vessels are a rich source of information for radar cross section (RCS) measurement and ship classification. However, ISAR imaging of sea vessels is a challenging task because the 3-D rotational motion of such vessels often gives rise to blurring. Blurry ISAR images are not desirable because they lead to inaccurate parameter estimation, which reduces the probability of correct classification. The objective of this thesis is to explain how 3-D rotational motion causes blurring in ISAR imagery and to develop effective techniques for imaging cooperative and non-cooperative sea vessels for RCS measurement and ship-classification purposes respectively. Much research has been done to investigate the effect of 3-D rotational motion on an ISAR image under the assumption that an object's axis of rotation is constant over the coherent processing interval (CPI). In this thesis, a new quaternion-based system model is proposed to characterise the amount of blurring in an ISAR image when a sea vessel possesses 3-D rotational motion over a CPI. Simulations were done to characterise the migration of a scatterer through Doppler cells due to the time-varying nature of the Doppler generating axis of rotation. Simulation results with realistic 3-D rotational motion show substantial blurring in the cross-range dimension of the resulting ISAR image, and this blurring is attributed to the time-varying nature of the angle of the Doppler generating axis of rotation and the object's rotation rate over the CPI

    Contributions in inverse synthetic aperture radar imaging

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multichannel techniques for 3D ISAR

    Get PDF
    This thesis deals with the challenge of forming 3D target reconstruction by using spatial multi-channel ISAR configurations. The standard output of an ISAR imaging system is a 2D projection of the true three-dimensional target reflectivity onto an image plane. The orientation of the image plane cannot be predicted a priori as it strongly depends on the radar-target geometry and on the target motion, which is typically unknown. This leads to a difficult interpretation of the ISAR images. In this scenario, this thesis aim to give possible solutions to such problems by proposing three 3D processing based on interferometry, beamforming techniques and MIMO InISAR systems. The CLEAN method for scattering centres extraction is extended to multichannel ISAR systems and a multistatic 3D target reconstruction that is based on a incoherent technique is suggested

    Multichannel techniques for 3D ISAR

    Get PDF
    This thesis deals with the challenge of forming 3D target reconstruction by using spatial multi-channel ISAR configurations. The standard output of an ISAR imaging system is a 2D projection of the true three-dimensional target reflectivity onto an image plane. The orientation of the image plane cannot be predicted a priori as it strongly depends on the radar-target geometry and on the target motion, which is typically unknown. This leads to a difficult interpretation of the ISAR images. In this scenario, this thesis aim to give possible solutions to such problems by proposing three 3D processing based on interferometry, beamforming techniques and MIMO InISAR systems. The CLEAN method for scattering centres extraction is extended to multichannel ISAR systems and a multistatic 3D target reconstruction that is based on a incoherent technique is suggested

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Investigation of non-cooperative target recognition of small and slow moving air targets in modern air defence surveillance radar

    Get PDF
    This thesis covers research in the field of non-cooperative target recognition given the limitations of modern air defence surveillance radars. The potential presence of low observable manned or unmanned targets within the vast surveillance volume demand highly sensitive systems. This may again introduce unwanted detections of single birds of comparable radar cross section, previously avoided by use of wide clutter rejection filters and sensitivity time control. The demand for methods effectively separating between birds and slow moving manmade targets is evident. The research questions addressed are connected to identification of characteristic features of birds and manmade targets of comparable size. Ultimately the goal has been to find methods that can utilize such features to effectively distinguish between the classes. In contrast to the vast majority of non-cooperative target recognition publications, this thesis includes non-rigid targets covering a range of dielectric properties and targets falling in the resonant and Rayleigh scattering regions. These factors combined with insufficient spatial resolution for classification require alternative approaches such as utilization of periodic RCS modulation, micro-Doppler- and polarimetric signatures. Signatures of birds and UAVs are investigated through electromagnetic prediction and radar measurements. A flexible and fully polarimetric radar capable of simultaneous operation in both L- and S-band is developed for collection of relevant signatures. Inspired by the use of polarimetric radar for classification of precipitation covered in the weather radar literature, focus has been on using similar methods to recognize signatures of rotors, propellers and bird wings. Novel micro-Doppler signatures combining polarimetric information from this sensor is found to hold information about the orientation of such target parts. This information combined with several other features is evaluated for classification. The benefit from involving polarimetric measurements is especially investigated, and is found to be highly valuable when information provided by other methods is limited

    Advanced signal processing tools for ballistic missile defence and space situational awareness

    Get PDF
    The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose.The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose

    A Short-Range FMCW Radar-Based Approach for Multi-Target Human-Vehicle Detection

    Get PDF
    In this article, a new microwave-radar-based technique for short-range detection and classification of multiple human and vehicle targets crossing a monitored area is proposed. This approach, which can find applications in both security and infrastructure surveillance, relies upon the processing of the scattered-field data acquired by low-cost off-The-shelf components, i.e., a 24 GHz frequency-modulated continuous wave (FMCW) radar module and a Raspberry Pi mini-PC. The developed method is based on an ad hoc processing chain to accomplish the automatic target recognition (ATR) task, which consists of blocks performing clutter and leakage removal with an infinite impulse response (IIR) filter, clustering with a density-based spatial clustering of applications with noise (DBSCAN) approach, tracking using a Benedict-Bordner alphaalpha -etaeta filter, features extraction, and finally classification of targets by means of a kk-nearest neighbor ( kk-NN) algorithm. The approach is validated in real experimental scenarios, showing its capabilities in correctly detecting multiple targets belonging to different classes (i.e., pedestrians, cars, motorcycles, and trucks)

    Terahertz Technology for Defense and Security-Related Applications

    Get PDF
    This thesis deals with chosen aspects of terahertz (THz) technology that have potential in defense and security-related applications. A novel method for simultaneous data acquisition in time-resolved THz spectroscopy experiments is developed. This technique is demonstrated by extracting the sheet conductivity of photoexcited charge carriers in semi-insulating gallium arsenide. Comparison with results obtained using a standard data acquisition scheme shows that the new method minimizes errors originating from fluctuations in the laser system out-put and timing errors in the THz pulse detection. Furthermore, a new organic material, BNA, is proved to be a strong and broadband THz emitter which enables spectroscopy with a bandwidth twice as large as conventional spectroscopy in the field. To access electric fields allowing exploration of THz nonlinear phenomena, field enhancement properties of tapered parallel plate waveguide
    corecore