181 research outputs found

    Compressed sensing subtracted rotational angiography with multiple sparse penalty

    Get PDF
    International audienceDigital Subtraction Rotational Angiography (DSRA) is a clinical protocol that allows three-dimensional (3D) visualization of vasculature during minimally invasive procedures. C-arm systems that are used to generate 3D reconstructions in interventional radiology have limited sampling rate and thus, contrast resolution. To address this particular subsampling problem, we propose a novel iterative reconstruction algorithm based on compressed sensing. To this purpose, we exploit both spatial and temporal sparsity of DSRA. For computational efficiency, we use a proximal implementation that accommodates multiple '1-penalties. Experiments on both simulated and clinical data confirm the relevance of our strategy for reducing subsampling streak artifacts

    Multiscale Functional and Molecular Photoacoustic Tomography

    Get PDF
    Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT

    Ultrason Imaging

    Get PDF
    Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT.DP1 EB016986/EB/NIBIB NIH HHS/United StatesR01 CA186567/CA/NCI NIH HHS/United StatesU01 NS090579/NS/NINDS NIH HHS/United StatesDP1 EB016986/DP/NCCDPHP CDC HHS/United States2016-01-01T00:00:00Z25933617PMC462890

    Cardiovascular Magnetic Resonance Imaging for the Investigation of Ischaemic Heart Disease

    Get PDF
    Introduction: Coronary artery disease (CAD) remains the number one cause of mortality worldwide; improving diagnosis and treatment is a priority. Multi- parametric cardiovascular magnetic resonance (CMR) offers quantitative assessment of the cardiovascular system with a variety of techniques allowing assessment of anatomy, function, myocardial composition and perfusion during a single scan. Aims: To assess 1.) diagnostic accuracy of visual and quantitative perfusion CMR to single-photon emission computed tomography (MPS-SPECT) in patients with left main stem CAD. 2.) the hypothesis that patients with ischaemic (ICM) and non-ischaemic cardiomyopathy (NICM) have different torsion and strain parameters 3.) development and validation of a contemporary multivariable risk model of CAD from a large population undergoing X-ray angiography. 4.) a rapid 3D mDIXON pulse sequence for image quality and quantitation of MI. 5.) T1 rho prepared (T1ρ) dark blood sequence and compare to blood nulled PSIR (BN) and standard myocardium nulled PSIR (MN) for detection and quantification of scar. Methods: Patients were recruited between 2008 and 2017. Patients in chapters 3,4,6,7 underwent multi-parametric CMR including late gadolinium enhancement (LGE) imaging at 1.5 or 3.0T. Patients in chapter 5 underwent angiography. Results: 1.) CMR demonstrated significantly higher area under the curve for detection of LMS or equivalent disease over MPS-SPECT(P=0.0001). 2.) Despite no difference in LV dimensions, EF and strain between ICM and NICM, NICM patients had significantly lower LV twist(P=0.023) and torsion(P=0.017) compared to ICM. 3.) The developed model discriminated well and was well-calibrated. Diamond and Forrester and Duke scores substantially over-predicted CAD risk, whilst CAD Consortium risk models slightly under-estimated risk. 4.) Image quality was comparable between 3D and 2D LGE(P=0.162). Time for 3D image acquisition was only 5% of the time required for a standard 2D acquisition. 5.) CNRscar-blood was significantly increased for BN and T1ρ compared to MN LGE. BN LGE demonstrated significantly higher reader confidence scores

    Rigid‐body motion correction of the liver in image reconstruction for golden‐angle stack‐of‐stars DCE MRI

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141403/1/mrm26782_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141403/2/mrm26782.pd

    Limited Angle Ultrasound Tomography of the Compressed Breast

    Full text link
    X-ray mammography is widely accepted as the clinical standard for breast cancer screening and diagnosis. However, reflection mode ultrasound has been known to outperform x-ray in screening performance in dense breasts. With newer modes of ultrasound, acoustic properties of breast tissue, such as the speed of sound and attenuation coefficient distributions, can be extracted from captured ultrasound signals and used to characterize breast tissue types and contribute to detection and diagnosis of malignancy. The same is possibly true for optical absorption via photoacoustic imaging. Recently, we have developed a dual-sided ultrasound scanner that can be integrated with existing x-ray mammographic systems and acquire images in the mammographic view and compression. Transmission imaging for speed of sound and attenuation coefficient in this geometry is termed limited angle tomography, as the beams at frequencies yielding high resolution cannot transit the long axis of the compressed breast. This approach, ideally, should facilitate the co-registration and comparisons between images from three modalities discussed here (x-ray, ultrasound and photoacoustic) and increase diagnostic detection confidence. However, potential limitations inherent in limited angle tomography have received minimal exploration up to this study, and existing imaging techniques developed for this approach are based on overly optimistic assumptions that hinder achievement of the desired image quality. This investigation of these problems should contribute valuable information to the validation and translation of the mammographically-configured, dual-sided ultrasound, or ultrasound and photoacoustic, scanner to the clinic. This dissertation first aims to extensively identify possible sources of error resulting from imaging in the limited angle tomography approach. Simulation findings mapping parametric conditions reveal that image artifacts arising in reflection mode (B-mode) can be modulated or mitigated by ultrasound gels with adequate acoustic properties. In addition, sound speed imaging was performed determining the level of significance for several key sources of error. Results suggest that imaging in transmission mode is the most sensitive to transducer misplacement in the signal propagation direction. This misplacement, however, could be minimized easily by routinely calibrating transducer positions. Next, this dissertation aims to advance speed of sound, attenuation, and photoacoustic image reconstruction algorithms for the limited angle tomography approach. This was done by utilizing both structural information of the imaged objects/tissues by means of the corresponding reflection mode images taken from the same imaging location, and a full acoustic modeling framework to account for complex acoustic interactions within the field of view. We have shown through simulations that both a priori information from reflection mode images and full acoustic modeling contribute to a noticeable improvement in the reconstructed images. Work done throughout the course of this dissertation should provide a foundation and insight necessary for improvements upon the existing dual-sided ultrasound scanner towards breast imaging in the clinic.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143944/1/rungroj_1.pd
    • 

    corecore