7 research outputs found

    Compressed Neighbour Discovery using Sparse Kerdock Matrices

    Full text link
    We study the network-wide neighbour discovery problem in wireless networks in which each node in a network must discovery the network interface addresses (NIAs) of its neighbours. We work within the rapid on-off division duplex framework proposed by Guo and Zhang (2010) in which all nodes are assigned different on-off signatures which allow them listen to the transmissions of neighbouring nodes during their off slots, leading to a compressed sensing problem at each node with a collapsed codebook determined by a given node's transmission signature. We propose sparse Kerdock matrices as codebooks for the neighbour discovery problem. These matrices share the same row space as certain Delsarte-Goethals frames based upon Reed Muller codes, whilst at the same time being extremely sparse. We present numerical experiments using two different compressed sensing recovery algorithms, One Step Thresholding (OST) and Normalised Iterative Hard Thresholding (NIHT). For both algorithms, a higher proportion of neighbours are successfully identified using sparse Kerdock matrices compared to codebooks based on Reed Muller codes with random erasures as proposed by Zhang and Guo (2011). We argue that the improvement is due to the better interference cancellation properties of sparse Kerdock matrices when collapsed according to a given node's transmission signature. We show by explicit calculation that the coherence of the collapsed codebooks resulting from sparse Kerdock matrices remains near-optimal

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by Δ±β‰œβˆ’1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The binary non-linear Kerdock codes are Gray images of β„€_4-linear Kerdock codes of length N =2^m . We show that exponentiating Δ±=βˆ’βˆš-1 by these β„€_4-valued codewords produces stabilizer states, which are the common eigenvectors of maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the proof of the classical weight distribution of Kerdock codes. Next, we partition stabilizer states into N +1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute the associated MCS. This automorphism group, represented as symplectic matrices, is isomorphic to the projective special linear group PSL(2,N) and forms a unitary 2-design. The design described here was originally discovered by Cleve et al. (2016), but the connection to classical codes is new. This significantly simplifies the description of the design and its translation to circuits

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The binary non-linear Kerdock codes are Gray images of β„€_4-linear Kerdock codes of length N =2^m . We show that exponentiating Δ±=βˆ’βˆš-1 by these β„€_4-valued codewords produces stabilizer states, which are the common eigenvectors of maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the proof of the classical weight distribution of Kerdock codes. Next, we partition stabilizer states into N +1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute the associated MCS. This automorphism group, represented as symplectic matrices, is isomorphic to the projective special linear group PSL(2,N) and forms a unitary 2-design. The design described here was originally discovered by Cleve et al. (2016), but the connection to classical codes is new. This significantly simplifies the description of the design and its translation to circuits

    Fundamental limits of many-user MAC with finite payloads and fading

    Full text link
    Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number kk of bits to send to the base station, and his signal gets attenuated by a random channel gain (quasi-static fading). In this paper we consider the many-user asymptotics of Chen-Chen-Guo'2017, where the number of users grows linearly with the blocklength. In addition, we adopt a per-user probability of error criterion of Polyanskiy'2017 (as opposed to classical joint-error probability criterion). Under these two settings we derive bounds on the optimal required energy-per-bit for reliable multi-access communication. We confirm the curious behaviour (previously observed for non-fading MAC) of the possibility of perfect multi-user interference cancellation for user densities below a critical threshold. Further we demonstrate the suboptimality of standard solutions such as orthogonalization (i.e., TDMA/FDMA) and treating interference as noise (i.e. pseudo-random CDMA without multi-user detection).Comment: 38 pages, conference version accepted to IEEE ISIT 201
    corecore