30,376 research outputs found

    Compressed Modular Matrix Multiplication

    Get PDF
    We propose to store several integers modulo a small prime into a single machine word. Modular addition is performed by addition and possibly subtraction of a word containing several times the modulo. Modular Multiplication is not directly accessible but modular dot product can be performed by an integer multiplication by the reverse integer. Modular multiplication by a word containing a single residue is a also possible. Therefore matrix multiplication can be performed on such a compressed storage. We here give bounds on the sizes of primes and matrices for which such a compression is possible. We also explicit the details of the required compressed arithmetic routines.Comment: Published in: MICA'2008 : Milestones in Computer Algebra, Tobago : Trinit\'e-et-Tobago (2008

    Dictionary Learning for Blind One Bit Compressed Sensing

    Full text link
    This letter proposes a dictionary learning algorithm for blind one bit compressed sensing. In the blind one bit compressed sensing framework, the original signal to be reconstructed from one bit linear random measurements is sparse in an unknown domain. In this context, the multiplication of measurement matrix \Ab and sparse domain matrix Φ\Phi, \ie \Db=\Ab\Phi, should be learned. Hence, we use dictionary learning to train this matrix. Towards that end, an appropriate continuous convex cost function is suggested for one bit compressed sensing and a simple steepest-descent method is exploited to learn the rows of the matrix \Db. Experimental results show the effectiveness of the proposed algorithm against the case of no dictionary learning, specially with increasing the number of training signals and the number of sign measurements.Comment: 5 pages, 3 figure

    Construction of a Large Class of Deterministic Sensing Matrices that Satisfy a Statistical Isometry Property

    Full text link
    Compressed Sensing aims to capture attributes of kk-sparse signals using very few measurements. In the standard Compressed Sensing paradigm, the \m\times \n measurement matrix \A is required to act as a near isometry on the set of all kk-sparse signals (Restricted Isometry Property or RIP). Although it is known that certain probabilistic processes generate \m \times \n matrices that satisfy RIP with high probability, there is no practical algorithm for verifying whether a given sensing matrix \A has this property, crucial for the feasibility of the standard recovery algorithms. In contrast this paper provides simple criteria that guarantee that a deterministic sensing matrix satisfying these criteria acts as a near isometry on an overwhelming majority of kk-sparse signals; in particular, most such signals have a unique representation in the measurement domain. Probability still plays a critical role, but it enters the signal model rather than the construction of the sensing matrix. We require the columns of the sensing matrix to form a group under pointwise multiplication. The construction allows recovery methods for which the expected performance is sub-linear in \n, and only quadratic in \m; the focus on expected performance is more typical of mainstream signal processing than the worst-case analysis that prevails in standard Compressed Sensing. Our framework encompasses many families of deterministic sensing matrices, including those formed from discrete chirps, Delsarte-Goethals codes, and extended BCH codes.Comment: 16 Pages, 2 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Parallel structurally-symmetric sparse matrix-vector products on multi-core processors

    Full text link
    We consider the problem of developing an efficient multi-threaded implementation of the matrix-vector multiplication algorithm for sparse matrices with structural symmetry. Matrices are stored using the compressed sparse row-column format (CSRC), designed for profiting from the symmetric non-zero pattern observed in global finite element matrices. Unlike classical compressed storage formats, performing the sparse matrix-vector product using the CSRC requires thread-safe access to the destination vector. To avoid race conditions, we have implemented two partitioning strategies. In the first one, each thread allocates an array for storing its contributions, which are later combined in an accumulation step. We analyze how to perform this accumulation in four different ways. The second strategy employs a coloring algorithm for grouping rows that can be concurrently processed by threads. Our results indicate that, although incurring an increase in the working set size, the former approach leads to the best performance improvements for most matrices.Comment: 17 pages, 17 figures, reviewed related work section, fixed typo

    Improving Matrix-vector Multiplication via Lossless Grammar-Compressed Matrices

    Get PDF
    As nowadays Machine Learning (ML) techniques are generating huge data collections, the problem of how to efficiently engineer their storage and operations is becoming of paramount importance. In this article we propose a new lossless compression scheme for real-valued matrices which achieves efficient performance in terms of compression ratio and time for linear-algebra operations. Ex- periments show that, as a compressor, our tool is clearly superior to gzip and it is usually within 20% of xz in terms of compression ratio. In addition, our compressed format supports matrix-vector multiplications in time and space proportional to the size of the compressed representation, unlike gzip and xz that require the full decompression of the compressed matrix. To our knowledge our lossless compressor is the first one achieving time and space com- plexities which match the theoretical limit expressed by the k-th order statistical entropy of the input. To achieve further time/space reductions, we propose column- reordering algorithms hinging on a novel column-similarity score. Our experiments on various data sets of ML matrices show that our column reordering can yield a further reduction of up to 16% in the peak memory usage during matrix-vector multiplication. Finally, we compare our proposal against the state-of-the-art Compressed Linear Algebra (CLA) approach showing that ours runs always at least twice faster (in a multi-thread setting), and achieves better compressed space occupancy and peak memory usage. This experimentally confirms the provably effective theoretical bounds we show for our compressed-matrix approach
    • …
    corecore