160 research outputs found

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Fast fallback watermark detection using perceptual hashes

    Get PDF
    Forensic watermarking is often used to enable the tracing of digital pirates that leak copyright-protected videos. However, existing watermarking methods have a limited robustness and may be vulnerable to targeted attacks. Our previous work proposed a fallback detection method that uses secondary watermarks rather than the primary watermarks embedded by existing methods. However, the previously proposed fallback method is slow and requires access to all watermarked videos. This paper proposes to make the fallback watermark detection method faster using perceptual hashes instead of uncompressed secondary watermark signals. These perceptual hashes can be calculated prior to detection, such that the actual detection process is sped up with a factor of approximately 26,000 to 92,000. In this way, the proposed method tackles the main criticism about practical usability of the slow fallback method. The fast detection comes at the cost of a modest decrease in robustness, although the fast fallback detection method can still outperform the existing primary watermark method. In conclusion, the proposed method enables fast and more robust detection of watermarks that were embedded by existing watermarking methods

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Scalable Video Coding in Fading Hybrid Satellite-Terrestrial Networks

    Get PDF

    A credit-based approach to scalable video transmission over a peer-to-peer social network

    Get PDF
    PhDThe objective of the research work presented in this thesis is to study scalable video transmission over peer-to-peer networks. In particular, we analyse how a credit-based approach and exploitation of social networking features can play a significant role in the design of such systems. Peer-to-peer systems are nowadays a valid alternative to the traditional client-server architecture for the distribution of multimedia content, as they transfer the workload from the service provider to the final user, with a subsequent reduction of management costs for the former. On the other hand, scalable video coding helps in dealing with network heterogeneity, since the content can be tailored to the characteristics or resources of the peers. First of all, we present a study that evaluates subjective video quality perceived by the final user under different transmission scenarios. We also propose a video chunk selection algorithm that maximises received video quality under different network conditions. Furthermore, challenges in building reliable peer-to-peer systems for multimedia streaming include optimisation of resource allocation and design mechanisms based on rewards and punishments that provide incentives for users to share their own resources. Our solution relies on a credit-based architecture, where peers do not interact with users that have proven to be malicious in the past. Finally, if peers are allowed to build a social network of trusted users, they can share the local information they have about the network and have a more complete understanding of the type of users they are interacting with. Therefore, in addition to a local credit, a social credit or social reputation is introduced. This thesis concludes with an overview of future developments of this research work
    corecore