63,027 research outputs found

    Estimating Entropy of Data Streams Using Compressed Counting

    Full text link
    The Shannon entropy is a widely used summary statistic, for example, network traffic measurement, anomaly detection, neural computations, spike trains, etc. This study focuses on estimating Shannon entropy of data streams. It is known that Shannon entropy can be approximated by Reenyi entropy or Tsallis entropy, which are both functions of the p-th frequency moments and approach Shannon entropy as p->1. Compressed Counting (CC) is a new method for approximating the p-th frequency moments of data streams. Our contributions include: 1) We prove that Renyi entropy is (much) better than Tsallis entropy for approximating Shannon entropy. 2) We propose the optimal quantile estimator for CC, which considerably improves the previous estimators. 3) Our experiments demonstrate that CC is indeed highly effective approximating the moments and entropies. We also demonstrate the crucial importance of utilizing the variance-bias trade-off

    Dynamic Data Structures for Document Collections and Graphs

    Full text link
    In the dynamic indexing problem, we must maintain a changing collection of text documents so that we can efficiently support insertions, deletions, and pattern matching queries. We are especially interested in developing efficient data structures that store and query the documents in compressed form. All previous compressed solutions to this problem rely on answering rank and select queries on a dynamic sequence of symbols. Because of the lower bound in [Fredman and Saks, 1989], answering rank queries presents a bottleneck in compressed dynamic indexing. In this paper we show how this lower bound can be circumvented using our new framework. We demonstrate that the gap between static and dynamic variants of the indexing problem can be almost closed. Our method is based on a novel framework for adding dynamism to static compressed data structures. Our framework also applies more generally to dynamizing other problems. We show, for example, how our framework can be applied to develop compressed representations of dynamic graphs and binary relations
    • …
    corecore