19,875 research outputs found

    Entropy-based algorithms for signal processing

    Get PDF
    Entropy, the key factor of information theory, is one of the most important research areas in computer science. Entropy coding informs us of the formal limits of today’s storage and communication infrastructure. Over the last few years, entropy has become an important trade-off measure in signal processing. Entropy measures especially have been used in image and video processing by applying sparsity and are able to help us to solve several of the issues that we are currently facing. As the daily produced data are increasing rapidly, a more effective approach to encode or compress the big data is required. In this sense, applications of entropy coding can improve image and video coding, imaging, quality assessment in agricultural products, and product inspection, by applying more effective coding approaches. In light of these and many other challenges, a Special Issue of Entropy-Based Algorithms for Signal Processing has been dedicated to address the current status, challenges, and future research priorities for the entropy of signal processing

    Image compression based on 2D Discrete Fourier Transform and matrix minimization algorithm

    Get PDF
    In the present era of the internet and multimedia, image compression techniques are essential to improve image and video performance in terms of storage space, network bandwidth usage, and secure transmission. A number of image compression methods are available with largely differing compression ratios and coding complexity. In this paper we propose a new method for compressing high-resolution images based on the Discrete Fourier Transform (DFT) and Matrix Minimization (MM) algorithm. The method consists of transforming an image by DFT yielding the real and imaginary components. A quantization process is applied to both components independently aiming at increasing the number of high frequency coefficients. The real component matrix is separated into Low Frequency Coefficients (LFC) and High Frequency Coefficients (HFC). Finally, the MM algorithm followed by arithmetic coding is applied to the LFC and HFC matrices. The decompression algorithm decodes the data in reverse order. A sequential search algorithm is used to decode the data from the MM matrix. Thereafter, all decoded LFC and HFC values are combined into one matrix followed by the inverse DFT. Results demonstrate that the proposed method yields high compression ratios over 98% for structured light images with good image reconstruction. Moreover, it is shown that the proposed method compares favorably with the JPEG technique based on compression ratios and image quality

    Towards a multimedia remote viewer for mobile thin clients

    Get PDF
    Be there a traditional mobile user wanting to connect to a remote multimedia server. In order to allow them to enjoy the same user experience remotely (play, interact, edit, store and share capabilities) as in a traditional fixed LAN environment, several dead-locks are to be dealt with: (1) a heavy and heterogeneous content should be sent through a bandwidth constrained network; (2) the displayed content should be of good quality; (3) user interaction should be processed in real-time and (4) the complexity of the practical solution should not exceed the features of the mobile client in terms of CPU, memory and battery. The present paper takes this challenge and presents a fully operational MPEG-4 BiFS solution
    • …
    corecore