35,939 research outputs found

    Principal component gene set enrichment (PCGSE)

    Get PDF
    Motivation: Although principal component analysis (PCA) is widely used for the dimensional reduction of biomedical data, interpretation of PCA results remains daunting. Most existing methods attempt to explain each principal component (PC) in terms of a small number of variables by generating approximate PCs with few non-zero loadings. Although useful when just a few variables dominate the population PCs, these methods are often inadequate for characterizing the PCs of high-dimensional genomic data. For genomic data, reproducible and biologically meaningful PC interpretation requires methods based on the combined signal of functionally related sets of genes. While gene set testing methods have been widely used in supervised settings to quantify the association of groups of genes with clinical outcomes, these methods have seen only limited application for testing the enrichment of gene sets relative to sample PCs. Results: We describe a novel approach, principal component gene set enrichment (PCGSE), for computing the statistical association between gene sets and the PCs of genomic data. The PCGSE method performs a two-stage competitive gene set test using the correlation between each gene and each PC as the gene-level test statistic with flexible choice of both the gene set test statistic and the method used to compute the null distribution of the gene set statistic. Using simulated data with simulated gene sets and real gene expression data with curated gene sets, we demonstrate that biologically meaningful and computationally efficient results can be obtained from a simple parametric version of the PCGSE method that performs a correlation-adjusted two-sample t-test between the gene-level test statistics for gene set members and genes not in the set. Availability: http://cran.r-project.org/web/packages/PCGSE/index.html Contact: [email protected] or [email protected]

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction

    Get PDF
    In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction error estimation, which is quantitatively assessed in the present manuscript. The focus of our work is on class prediction based on high-dimensional data (e.g. microarray data), since such analyses are particularly exposed to this kind of bias. In our study we consider a total of 124 variants of classifiers (possibly including variable selection or tuning steps) within a cross-validation evaluation scheme. The classifiers are applied to original and modified real microarray data sets, some of which are obtained by randomly permuting the class labels to mimic non-informative predictors while preserving their correlation structure. We then assess the minimal misclassification rate over the different variants of classifiers in order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven manner. The bias resulting from the parameter tuning (including gene selection parameters as a special case) and the bias resulting from the choice of the classification method are examined both separately and jointly. We conclude that the strategy to present only the optimal result is not acceptable, and suggest alternative approaches for properly reporting classification accuracy

    Pathway-Based Genomics Prediction using Generalized Elastic Net.

    Get PDF
    We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach
    • …
    corecore