540 research outputs found

    Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions

    Get PDF
    Percutaneous thermal ablation has proved to be an effective modality for treating both benign and malignant tumors in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50 oC, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumor destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of- the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non- invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow

    Histopathological evaluation of prostate specimens after thermal ablation may be confounded by the presence of thermally fixed cells.

    Get PDF
    TULSA (transurethral ultrasound ablation) on kokeellinen magneettikuvantamisohjattu hoitomuoto eturauhassairauksien hoitoon. Sen vaikutus perustuu virtsaputken kautta lähetettäviin ultraääniaaltoihin, jotka kuumentavat eturauhaskudosta. Eturauhaskudoksen lämpötilan nousu yli 55 asteen aiheuttaa välittömän koagulaationekroosiin, johon menetelmän terapeuttinen vaikutus perustuu. Hoidon aikana seurataan reealiaikaisesti kohdekudoksen lämpötilamuutoksia lämpöherkillä magneettikuvilla, MRI-termometrialla, jonka avulla voidaan varmistaa haluttu lämpövaikutus eturauhasessa. Nopea ja korkea lämpötilan nousu saattaa kuitenkin aiheuttaa termofiksaatioksi kutsutun ilmiön, jossa kudos vaikuttaa morfologisesti elinkelpoiselta, vaikka todellisuudessa kudos saattaa olla tuhoutunut. Tämän tutkimuksen tarkoitus oli määrittää epäilyjen termofiksoituneiden eturauhasalueiden elinkelpoisuus ja kuvailla näiden immunoprofiilia. Prospektiivisissa tutkimuksessa (ClinicalTrials.gov: NCT03350529) 6 potilaan eturauhassyövät hoidettiin TULSA-hoidolla. Jokaisella potilaalla oli magneettikuvantamisella todennettu ja biopsiavarmennettu eturauhassyöpä ja jokaiselle potilaalle tehtiin gadolinium-tehosteinen magneettikuvaus ja eturauhasen poistoleikkaus kolme viikkoa TULSA-hoidon jälkeen. Leikkauksessa poistetuille eturauhasille tehtiin normaali histopatologinen tutkimus. Mikäli epävarmuus täydellisestä nekroosista hematosykliini-eosiinivärjäyksen jälkeen jäi, tehtiin immunohistokemiallinen värjäys. Ablaatioalueen vertailukohtana morfologian tutkimisessa käytettiin eturauhasen lämpövaikutukselta välttynyttä kudosta. Yhdellä potilaalla todettiin termofiksaatio. Alue sijaitsi ablaatioalueen sisällä kohdassa, jossa MRI-termometriassa lämpötila oli ollut korkeimmillaan. Alueen verisuonitus oli myös täysin hävinnyt gadolinium-tehosteisissa magneettikuvissa. Ympärillä oleva kudos oli hematosykliini-eosiinivärjäyksessä nekrotisoitunut. Elinkelpoiselta näyttäneen kudoksen immunoprofiilissa paljastui termofiksaatioon sopivia värjäysmallin muutoksia. Tärkeimpänä todisteena termofiksaatiosta oli Cam5.2- vasta-aineella havaittu cytokeratin 8 -värjäyksen negatiivisuus. Laaja kirjallisuuskatsaus tukee näitä havaintoja eturauhasesta ja muista kudoksista havaituista termofiksaatioista. Termofiksoituneet solut siis voivat säilyttää morfologiansa hematosykliini-eosiinvärjäyksessä. Mikäli termofiksoituneita alueita ei tunnisteta tai ei tutkita immunohistokemiallisesti, voi lopputuloksena olla väärä päättely hoidon epäonnistumisesta. Aikasempaan kirjallisuuteen ja tähän tutkimukseen perustuen Cam5.2. värjäys cytokeratin 8:lle vaikuttaa olevan käytännöllinen ja luotettava apuväline termofiksoituneiden solujen erottamiseksi elinkelpoisista soluista

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    Clinical Trials of Thermosensitive Nanomaterials: An Overview

    Get PDF
    Currently, we are facing increasing demand to develop efficient systems for the detection and treatment of diseases that can realistically improve distinct aspects of healthcare in our society. Sensitive nanomaterials that respond to environmental stimuli can play an important role in this task. In this manuscript, we review the clinical trials carried out to date on thermosensitive nanomaterials, including all those clinical trials in hybrid nanomaterials that respond to other stimuli (e.g., magnetic, infrared radiation, and ultrasound). Specifically, we discuss their use in diagnosis and treatment of different diseases. At present, none of the existing trials focused on diagnosis take advantage of the thermosensitive characteristics of these nanoparticles. Indeed, almost all clinical trials consulted explore the use of Ferumoxytol as a current imaging test enhancer. However, the thermal property is being further exploited in the field of disease treatment, especially for the delivery of antitumor drugs. In this regard, ThermoDox®, based on lysolipid thermally sensitive liposome technology to encapsulate doxorubicin (DOX), is the flagship drug. In this review, we have evidenced the discrepancy existing between the number of published papers in thermosensitive nanomaterials and their clinical use, which could be due to the relative novelty of this area of research; more time is needed to validate it through clinical trials. We have no doubt that in the coming years there will be an explosion of clinical trials related to thermosensitive nanomaterials that will surely help to improve current treatments and, above all, will impact on patients’ quality of life and life expectancy.This research was supported by the Fundación Mutua Madrileña by the project FMM-AP16683-2017, Consejería de Salud Junta de Andalucía (PI-0089-2017), MINECO MAT 2016-78778-R, PCIN-2015-051 projects (Spain), European Regional Development Fund (ERDF) and from the Chair “Doctors Galera-Requena in cancer stem cell research”

    Magneettikuvauksella ohjattu korkean intensiteetin kohdennettu ultraääniteknologia syöpätautien liitännäishoidoissa ja syöpälääkkeiden annostelussa

    Get PDF
    Ablative hyperthermia (more than 55 °C) has been used as a stand-alone treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40-45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is noninvasive and spatially accurate, with precise and homogeneous heating limited to the target region. High-intensity focused ultrasound (HIFU) can noninvasively heat solid tumors deep within the human body. Magnetic resonance imaging (MRI) is ideal for HIFU treatment planning and monitoring in real time due to its superior soft-tissue contrast, high spatial imaging resolution, and the ability to measure temperature changes. The combination of MRI and HIFU therapy is known as magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU). Low temperature-sensitive liposomes (LTSLs) release their drug cargo in response to heat (more than 40 °C) and may improve drug delivery to solid tumors when combined with mild hyperthermia. MR-HIFU provides a way to image and control content release from imageable low-temperature sensitive liposomes (iLTSLs). This ability may enable spatiotemporal control over drug delivery - a concept known as drug dose painting. The objectives of this dissertation work were to develop and implement a clinically relevant volumetric mild hyperthermia heating algorithm, to implement and characterize different sonication approaches (multiple foci vs. single focus), and to evaluate the ability to monitor and control heating in real time using MR-HIFU. In addition, the ability of MR-HIFU to induce the release of a clinical-grade cancer drug encapsulated in LTSLs was investigated, and the potential of MR-HIFU mediated mild hyperthermia for clinical translation as an image-guided drug delivery method was explored. Finally, drug and contrast agent release of iLTSLs as well as the ability of MR-HIFU to induce and monitor the content release were examined, and a computational model that simulates MR-HIFU tissue heating and drug delivery was validated. The combination of a multifoci sonication approach and the mild hyperthermia heating algorithm resulted in precise and homogeneous heating limited to the targeted region both in vitro and in vivo. Heating was more spatially confined compared to the use of single focus sonication method. The improvement in spatial control suggests that multifoci heating is a useful tool in MR-HIFU mediated mild hyperthermia applications for clinical oncology. Using the mild hyperthermia heating algorithm, LTSL + MR-HIFU resulted in significantly higher tumor drug concentrations compared to free drug and LTSL alone. This technique has potential for clinical translation as an image-guided drug delivery method. MR-HIFU also enabled real-time monitoring and control of iLTSL content release. Finally, computational models may allow quantitative in silico comparison of different MR-HIFU heating algorithms as well as facilitate therapy planning for this drug delivery technique.Ablatiivista hypertermiaa (yli 55 °C) on perinteisesti käytetty leikkauksiin soveltumattomien kasvainten hoitoon. Lievän hypertermian (40-45 °C) on sen sijaan todettu olevan tehokas liitännäishoito syöpätautien säde- ja lääkehoidoille. Suotuisa hypertermiahoito on kajoamatonta ja täsmällisesti kohdistettua. Lämmityksen tulisi lisäksi olla tarkkaa, tasalaatuista ja kohdealueeseen rajoittunutta. Korkean intensiteetin kohdennettu ultraääni (HIFU) -hoito mahdollistaa kasvainten kajoamattoman lämmityksen. Magneettikuvauksen (MK) etuina ovat erinomainen pehmytkudoskontrasti, korkea paikkaresoluutio ja kyky mitata lämpötilan muutoksia. Näin ollen MK soveltuu erinomaisesti HIFU -hoitojen suunnitteluun ja seurantaan. MK:n ja HIFU:n yhdistelmää kutsutaan magneettikuvauksella ohjatuksi korkean intensiteetin kohdennetuksi ultraääniteknologiaksi (MR-HIFU). Lämpötilaherkät liposomit ovat suunniteltuja vapauttamaan lääkeainesisältönsä hieman normaalia ruumiinlämpötilaa korkeammissa lämpötiloissa (yli 40 °C). Yhdessä lievän hypertermian kanssa tämänkaltaiset liposomit voivat mahdollistaa kohdistetun lääkeaineen vapauttamisen. Liposomien sisällön vapautumisen tarkkailu voi myös mahdollistaa tarkan lääkemäärän kohdistetun annostelun kasvaimessa. Väitöskirjatyössä kehitettiin kliinisesti merkittävä lämmitysalgoritmi lievän hypertermian aikaansaamiseksi, toteutettiin usean samanaikaisen kohteen sonikaatio (ultraäänialtistus) menetelmä sekä arvioitiin algoritmin ja menetelmän kykyä kontrolloida kudoksen lämpötilaa käyttäen kliinistä MR-HIFU laitetta. Lisäksi tutkittiin HIFU:n kykyä vapauttaa lääkeaine lämpötilaherkistä liposomeista, karakterisoitiin lääke- ja kontrastiaineen vapautuminen kuvannettavissa olevista lämpötilaherkistä liposomeista sekä tarkasteltiin MR-HIFU:lla aikaansaadun lievän hypertermian potentiaalia kohdentaa lääkeaineen vapautuminen kasvaimeen. Tässä työssä myös validoitiin laskennallinen malli, joka simuloi MR-HIFU:lla aikaansaatua lämmitystä ja siitä johtuvaa lääkeaineen vapautumista, sekä todennettiin MR-HIFU:n sopivuus lämpöablaatioon perustuvaan kohdun pehmytkudoskasvainten hoitomenelmään kliinisessä käytössä. Lievän hypertermian lämmitysalgoritmi yhdessä usean kohteen sonikaatiomenetelmän kanssa tuotti täsmällisen, tasalaatuisen sekä paikallisesti rajoitetun lämmityksen kohdealueessa. Usean kohteen sonikaatiomenetelmä voi siis olla hyödyllinen työkalu MR-HIFU:n lievän hypertermian syöpähoidon sovelluksissa. MR-HIFU yhdessä lämpötilaherkkien liposomien kanssa sai aikaan merkittävästi korkeamman kasvaimen lääkeainekonsentraation verrokkiryhmiin nähden, ja saattaa siten soveltua kliiniseen käyttöön kuvantamisavusteisena lääkehoitona. Liposomien sisällön (lääkeaine + MK-kontrastiaine) vapautumisen kuvannettavuus merkitsee, että MR-HIFU saattaa lisäksi mahdollistaa tarkan lääkeannoksen kohdistetun vapauttamisen

    Magnetic resonance imaging and navigation of ferromagnetic thermoseeds to deliver thermal ablation therapy

    Get PDF
    Minimally invasive therapies aim to deliver effective treatment whilst reducing off-target burden, limiting side effects, and shortening patient recovery times. Remote navigation of untethered devices is one method that can be used to deliver targeted treatment to deep and otherwise inaccessible locations within the body. Minimally invasive image-guided ablation (MINIMA) is a novel thermal ablation therapy for the treatment of solid tumours, whereby an untethered ferromagnetic thermoseed is navigated through tissue to a target site within the body, using the magnetic field gradients generated by a magnetic resonance imaging (MRI) system. Once at the tumour, the thermoseed is heated remotely using an alternating magnetic field, to induce cell death in the surrounding cancer tissue. The thermoseed is then navigated through the tumour, heating at pre-defined locations until the entire volume has been ablated. The aim of this PhD project is to develop MINIMA through a series of proof-of-concept studies and to assess the efficacy of the three key project components: imaging, navigation, and heating. First, an MR imaging sequence was implemented to track the thermoseeds during navigation and subsequently assessed for precision and accuracy. Secondly, movement of the thermoseeds through a viscous fluid was characterised, by measuring the effect of different navigation parameters. This was followed by navigation experiments performed in ex vivo tissue. To assess thermoseed heating, a series of in vitro experiments were conducted in air, water, and ex vivo liver tissue, before moving onto in vivo experiments in the rat brain and a murine subcutaneous tumour model. These final experiments allowed the extent of cell death induced by thermoseed heating to be determined, in both healthy and diseased tissue respectively

    State-of-the-Art and Development Trend of Interventional Ultrasound in China

    Get PDF
    Interventional ultrasound (IUS) is an important branch of modern minimally invasive medicine that has been widely applied in clinical practice due to its unique techniques and advantages. As a relatively emerging field, IUS has progressed towards standardization, precision, intelligence, and cutting-edge directions alone with more than 40 years of development, which is becoming increasingly important techniques in clinical medicine. This article will briefly review the development and advancement of IUS for diagnosis and treatment in China in the era of precision medicine from the aspects of artificial intelligence, virtual navigation, molecular imaging, and nanotechnology

    Combining energy-based focal ablation and immune checkpoint inhibitors: preclinical research and clinical trials

    Get PDF
    Energy-based focal therapy (FT) uses targeted, minimally invasive procedures to destroy tumors while preserving normal tissue and function. There is strong emerging interest in understanding how systemic immunity against the tumor can occur with cancer immunotherapy, most notably immune checkpoint inhibitors (ICI). The motivation for combining FT and ICI in cancer management relies on the synergy between the two different therapies: FT complements ICI by reducing tumor burden, increasing objective response rate, and reducing side effects of ICI; ICI supplements FT by reducing local recurrence, controlling distal metastases, and providing long-term protection. This combinatorial strategy has shown promising results in preclinical study (since 2004) and the clinical trials (since 2011). Understanding the synergy calls for understanding the physics and biology behind the two different therapies with distinctive mechanisms of action. In this review, we introduce different types of energy-based FT by covering the biophysics of tissue-energy interaction and present the immunomodulatory properties of FT. We discuss the basis of cancer immunotherapy with the emphasis on ICI. We examine the approaches researchers have been using and the results from both preclinical models and clinical trials from our exhaustive literature research. Finally, the challenges of the combinatory strategy and opportunities of future research is discussed extensively

    A 3-Dimensional In Silico Test Bed for Radiofrequency Ablation Catheter Design Evaluation and Optimization

    Get PDF
    Atrial fibrillation (AF) is the disordered activation of the atrial myocardium, which is a major cause of stroke. Currently, the most effective, minimally traumatic treatment for AF is percutaneous catheter ablation to isolate arrhythmogenic areas from the rest of the atrium. The standard in vitro evaluation of ablation catheters through lesion studies is a resource intensive effort due to tissue variability and visual measurement methods, necessitating large sample sizes and multiple prototype builds. A computational test bed for ablation catheter evaluation was built in SolidWorks® using the morphology and dimensions of the left atrium adjacent structures. From this geometry, the physical model was built in COMSOL Multiphysics®, where a combination of the laminar fluid flow, electrical currents, and bioheat transfer was used to simulate radiofrequency (RF) tissue ablation. Simulations in simplified 3D geometries led to lesions sizes within the reported ranges from an in-vivo ablation study. However, though the ellipsoid lesion morphologies in the full atrial model were consistent with past lesion studies, perpendicularly oriented catheter tips were associated with decreases of -91.3% and -70.0% in lesion depth and maximum diameter. On the other hand, tangentially oriented catheter tips produced lesions that were only off by -28.4% and +7.9% for max depth and max diameter. Preliminary investigation into the causes of the discrepancy were performed for fluid velocities, contact area, and other factors. Finally, suggestions for further investigation are provided to aid in determining the root cause of the discrepancy, such that the test bed may be used for other ablation catheter evaluations

    Holmium Microparticles for Intratumoral Radioablation

    Get PDF
    corecore