49 research outputs found

    Modern and Lightweight Component-based Symmetric Cipher Algorithms: A Review

    Get PDF
    Information security, being one of the corner stones of network and communication technology, has been evolving tremendously to cope with the parallel evolution of network security threats. Hence, cipher algorithms in the core of the information security process have more crucial role to play here, with continuous need for new and unorthodox designs to meet the increasing complexity of the applications environment that keep offering challenges to the current existing cipher algorithms. The aim of this review is to present symmetric cipher main components, the modern and lightweight symmetric cipher algorithms design based on the components that utilized in cipher design, highlighting the effect of each component and the essential component among them, how the modern cipher has modified to lightweight cipher by reducing the number and size of these components, clarify how these components give the strength for symmetric cipher versus asymmetric of cipher. Moreover, a new classification of cryptography algorithms to four categories based on four factors is presented. Finally, some modern and lightweight symmetric cipher algorithms are selected, presented with a comparison between them according to their components by taking into considerations the components impact on security, performance, and resource requirements

    FFT-Based Key Recovery for the Integral Attack

    Get PDF
    The integral attack is one of the most powerful attack against block ciphers. In this paper, we propose two new techniques for the integral attack, the FFT technique and the key concealment technique. The FFT technique is useful for the integral attack with enormous chosen plaintexts. As the previous result using FFT, Collard et al. showed a new technique which reduces the complexity for the linear attack. In this paper, we review the result of Collard et al. to estimate the complexity in detail, and we show the complexity can be estimated from the number of times using the addition of integers. Moreover, we show that attacks using FFT can be applied to the integral attack. As applications, we show integral attacks against AES and CLEFIA. For AES, we show that 6-round AES can be attacked with about 251.7additions.ForCLEFIA,weshowthat12roundCLEFIAcanbeattackedwithabout2^{51.7} additions. For CLEFIA, we show that 12-round CLEFIA can be attacked with about 2^{86.9}$ additions

    Analyse et Conception d'Algorithmes de Chiffrement Légers

    Get PDF
    The work presented in this thesis has been completed as part of the FUI Paclido project, whose aim is to provide new security protocols and algorithms for the Internet of Things, and more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight authenticated encryption algorithms, which are designed to fit into the limited resources of constrained environments. The first main contribution focuses on the design of a lightweight cipher called Lilliput-AE, which is based on the extended generalized Feistel network (EGFN) structure and was submitted to the Lightweight Cryptography (LWC) standardization project initiated by NIST (National Institute of Standards and Technology). Another part of the work concerns theoretical attacks against existing solutions, including some candidates of the nist lwc standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms are presented, along with a more general study of boomerang attacks against ciphers following a Feistel construction.Les travaux présentés dans cette thèse s’inscrivent dans le cadre du projet FUI Paclido, qui a pour but de définir de nouveaux protocoles et algorithmes de sécurité pour l’Internet des Objets, et plus particulièrement les réseaux de capteurs sans fil. Cette thèse s’intéresse donc aux algorithmes de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des systèmes très limités en ressources. Une première partie des contributions porte sur la conception de l’algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (EGFN) et soumis au projet de standardisation international Lightweight Cryptography (LWC) organisé par le NIST (National Institute of Standards and Technology). Une autre partie des travaux se concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment un certain nombre de candidats à la compétition LWC du NIST. Elle présente donc des analyses spécifiques des algorithmes Skinny et Spook ainsi qu’une étude plus générale des attaques de type boomerang contre les schémas de Feistel

    Algebraic Cryptanalysis of Deterministic Symmetric Encryption

    Get PDF
    Deterministic symmetric encryption is widely used in many cryptographic applications. The security of deterministic block and stream ciphers is evaluated using cryptanalysis. Cryptanalysis is divided into two main categories: statistical cryptanalysis and algebraic cryptanalysis. Statistical cryptanalysis is a powerful tool for evaluating the security but it often requires a large number of plaintext/ciphertext pairs which is not always available in real life scenario. Algebraic cryptanalysis requires a smaller number of plaintext/ciphertext pairs but the attacks are often underestimated compared to statistical methods. In algebraic cryptanalysis, we consider a polynomial system representing the cipher and a solution of this system reveals the secret key used in the encryption. The contribution of this thesis is twofold. Firstly, we evaluate the performance of existing algebraic techniques with respect to number of plaintext/ciphertext pairs and their selection. We introduce a new strategy for selection of samples. We build this strategy based on cube attacks, which is a well-known technique in algebraic cryptanalysis. We use cube attacks as a fast heuristic to determine sets of plaintexts for which standard algebraic methods, such as Groebner basis techniques or SAT solvers, are more efficient. Secondly, we develop a~new technique for algebraic cryptanalysis which allows us to speed-up existing Groebner basis techniques. This is achieved by efficient finding special polynomials called mutants. Using these mutants in Groebner basis computations and SAT solvers reduces the computational cost to solve the system. Hence, both our methods are designed as tools for building polynomial system representing a cipher. Both tools can be combined and they lead to a significant speedup, even for very simple algebraic solvers

    Design of Efficient Symmetric-Key Cryptographic Algorithms

    Get PDF
    兵庫県立大学大学院202

    State of the Art in Lightweight Symmetric Cryptography

    Get PDF
    Lightweight cryptography has been one of the hot topics in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a lightweight algorithm is usually designed to satisfy in both the software and the hardware case. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (NIST...) and international (ISO/IEC...) standards are listed. We identified several trends in the design of lightweight algorithms, such as the designers\u27 preference for ARX-based and bitsliced-S-Box-based designs or simpler key schedules. We also discuss more general trade-offs facing the authors of such algorithms and suggest a clearer distinction between two subsets of lightweight cryptography. The first, ultra-lightweight cryptography, deals with primitives fulfilling a unique purpose while satisfying specific and narrow constraints. The second is ubiquitous cryptography and it encompasses more versatile algorithms both in terms of functionality and in terms of implementation trade-offs

    Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

    Get PDF
    In this thesis, I present the research I did with my co-authors on several aspects of symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD student at the university of Luxembourg under the supervision of Alex Biryukov. My research has spanned three different areas of symmetric cryptography. In Part I of this thesis, I present my work on lightweight cryptography. This field of study investigates the cryptographic algorithms that are suitable for very constrained devices with little computing power such as RFID tags and small embedded processors such as those used in sensor networks. Many such algorithms have been proposed recently, as evidenced by the survey I co-authored on this topic. I present this survey along with attacks against three of those algorithms, namely GLUON, PRINCE and TWINE. I also introduce a new lightweight block cipher called SPARX which was designed using a new method to justify its security: the Long Trail Strategy. Part II is devoted to S-Box reverse-engineering, a field of study investigating the methods recovering the hidden structure or the design criteria used to build an S-Box. I co-invented several such methods: a statistical analysis of the differential and linear properties which was applied successfully to the S-Box of the NSA block cipher Skipjack, a structural attack against Feistel networks called the yoyo game and the TU-decomposition. This last technique allowed us to decompose the S-Box of the last Russian standard block cipher and hash function as well as the only known solution to the APN problem, a long-standing open question in mathematics. Finally, Part III presents a unifying view of several fields of symmetric cryptography by interpreting them as purposefully hard. Indeed, several cryptographic algorithms are designed so as to maximize the code size, RAM consumption or time taken by their implementations. By providing a unique framework describing all such design goals, we could design modes of operations for building any symmetric primitive with any form of hardness by combining secure cryptographic building blocks with simple functions with the desired form of hardness called plugs. Alex Biryukov and I also showed that it is possible to build plugs with an asymmetric hardness whereby the knowledge of a secret key allows the privileged user to bypass the hardness of the primitive

    Triathlon of Lightweight Block Ciphers for the Internet of Things

    Get PDF
    In this paper, we introduce a framework for the benchmarking of lightweight block ciphers on a multitude of embedded platforms. Our framework is able to evaluate the execution time, RAM footprint, as well as binary code size, and allows one to define a custom "figure of merit" according to which all evaluated candidates can be ranked. We used the framework to benchmark implementations of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED, Piccolo, PRESENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and TWINE, on three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results bring some new insights into the question of how well these lightweight ciphers are suited to secure the Internet of things. The benchmarking framework provides cipher designers with an easy-to-use tool to compare new algorithms with the state of the art and allows standardization organizations to conduct a fair and consistent evaluation of a large number of candidates
    corecore