64 research outputs found

    Energy Efficient and Cooperative Solutions for Next-Generation Wireless Networks

    Get PDF
    Energy efficiency is increasingly important for next-generation wireless systems due to the limited battery resources of mobile clients. While fourth generation cellular standards emphasize low client battery consumption, existing techniques do not explicitly focus on reducing power that is consumed when a client is actively communicating with the network. Based on high data rate demands of modern multimedia applications, active mode power consumption is expected to become a critical consideration for the development and deployment of future wireless technologies. Another reason for focusing more attention on energy efficient studies is given by the relatively slow progress in battery technology and the growing quality of service requirements of multimedia applications. The disproportion between demanded and available battery capacity is becoming especially significant for small-scale mobile client devices, where wireless power consumption dominates within the total device power budget. To compensate for this growing gap, aggressive improvements in all aspects of wireless system design are necessary. Recent work in this area indicates that joint link adaptation and resource allocation techniques optimizing energy efficient metrics can provide a considerable gain in client power consumption. Consequently, it is crucial to adapt state-of-the-art energy efficient approaches for practical use, as well as to illustrate the pros and cons associated with applying power-bandwidth optimization to improve client energy efficiency and develop insights for future research in this area. This constitutes the first objective of the present research. Together with energy efficiency, next-generation cellular technologies are emphasizing stronger support for heterogeneous multimedia applications. Since the integration of diverse services within a single radio platform is expected to result in higher operator profits and, at the same time, reduce network management expenses, intensive research efforts have been invested into design principles of such networks. However, as wireless resources are limited and shared by clients, service integration may become challenging. A key element in such systems is the packet scheduler, which typically helps ensure that the individual quality of service requirements of wireless clients are satisfied. In contrastingly different distributed wireless environments, random multiple access protocols are beginning to provide mechanisms for statistical quality of service assurance. However, there is currently a lack of comprehensive analytical frameworks which allow reliable control of the quality of service parameters for both cellular and local area networks. Providing such frameworks is therefore the second objective of this thesis. Additionally, the study addresses the simultaneous operation of a cellular and a local area network in spectrally intense metropolitan deployments and solves some related problems. Further improving the performance of battery-driven mobile clients, cooperative communications are sought as a promising and practical concept. In particular, they are capable of mitigating the negative effects of fading in a wireless channel and are thus expected to enhance next-generation cellular networks in terms of client spectral and energy efficiencies. At the cell edges or in areas missing any supportive relaying infrastructure, client-based cooperative techniques are becoming even more important. As such, a mobile client with poor channel quality may take advantage of neighboring clients which would relay data on its behalf. The key idea behind the concept of client relay is to provide flexible and distributed control over cooperative communications by the wireless clients themselves. By contrast to fully centralized control, this is expected to minimize overhead protocol signaling and hence ensure simpler implementation. Compared to infrastructure relay, client relay will also be cheaper to deploy. Developing the novel concept of client relay, proposing simple and feasible cooperation protocols, and analyzing the basic trade-offs behind client relay functionality become the third objective of this research. Envisioning the evolution of cellular technologies beyond their fourth generation, it appears important to study a wireless network capable of supporting machine-to-machine applications. Recent standardization documents cover a plethora of machine-to-machine use cases, as they also outline the respective technical requirements and features according to the application or network environment. As follows from this activity, a smart grid is one of the primary machine-to-machine use cases that involves meters autonomously reporting usage and alarm information to the grid infrastructure to help reduce operational cost, as well as regulate a customer's utility usage. The preliminary analysis of the reference smart grid scenario indicates weak system architecture components. For instance, the large population of machine-to-machine devices may connect nearly simultaneously to the wireless infrastructure and, consequently, suffer from excessive network entry delays. Another concern is the performance of cell-edge machine-to-machine devices with weak wireless links. Therefore, mitigating the above architecture vulnerabilities and improving the performance of future smart grid deployments is the fourth objective of this thesis. Summarizing, this thesis is generally aimed at the improvement of energy efficient properties of mobile devices in next-generation wireless networks. The related research also embraces a novel cooperation technique where clients may assist each other to increase per-client and network-wide performance. Applying the proposed solutions, the operation time of mobile clients without recharging may be increased dramatically. Our approach incorporates both analytical and simulation components to evaluate complex interactions between the studied objectives. It brings important conclusions about energy efficient and cooperative client behaviors, which is crucial for further development of wireless communications technologies

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    End to end architecture and mechanisms for mobile and wireless communications in the Internet

    Get PDF
    Architecture et mécanismes de bout en bout pour les communications mobiles et sans fil dans l'Internet. La gestion performante de la mobilité et l'amélioration des performances des couches basses sont deux enjeux fondamentaux dans le contexte des réseaux sans fil. Cette thèse apporte des solutions originales et innovantes qui visent à répondre à ces deux problématiques empêchant à ce jour d'offrir des possibilités de communication performantes et sans couture aux usagers mobiles accédant à l'Internet via des réseaux d'accès locaux sans fil (WLAN). Ces solutions se distinguent en particulier par l'impact minimum qu'elles ont sur les protocoles standards de l'Internet (niveaux transport et réseau) ou de l'IEEE (niveaux physique et liaison de données). S'inscrivant dans les paradigmes de "bout en bout" et "cross-layer", notre architecture permet d'offrir des solutions efficaces pour la gestion de la mobilité : gestion de la localisation et des handover en particulier. En outre, nous montrons que notre approche permet également d'améliorer l'efficacité des transmissions ainsi que de résoudre efficacement plusieurs syndromes identifiés au sein de 802.11 tels que les anomalies de performance, l'iniquité entre les flux et l'absence de contrôle de débit entre la couche MAC et les couches supérieures. Cette thèse résout ces problèmes en combinant des modèles analytiques, des simulations et de réelles expérimentations. Ces mécanismes adaptatifs ont été développés et intégrés dans une architecture de communication qui fournit des services de communication à haute performance pour réseaux sans fils tels que WIFI et WIMAX. ABSTRACT : Wireless networks, because of the potential pervasive and mobile communication services they offer, are becoming the dominant Internet access networks. However, the legacy Internet protocols, still dominant at that time, have not been designed with mobility and wireless in mind. Therefore, numerous maladjustments and “defaults of impedance” can be observed when combining wireless physical and MAC layers with the traditional upper layers. This thesis proposes several solutions for a pacific coexistence between these communication layers that have been defined and designed independently. Reliable mobility management and Low layer performance enhancements are two main challenging issues in the context of wireless networks. Mobility management (which is mostly based on mobile IP architecture nowadays) aims to continuously assign and control the wireless connections of mobile nodes amongst a space of wireless access networks. Low layer performance enhancements mainly focus on the transmission efficiency such as higher rate, lower loss, interference avoidance. This thesis addresses these two important issues from an original and innovative approach that, conversely to the traditional contributions, entails a minimum impact on the legacy protocols and internet infrastructure. Following the “end to end” and “cross layer” paradigms, we address and offer efficient and light solutions to fast handover, location management and continuous connection support through a space of wireless networks. Moreover, we show that such an approach makes it possible to enhance transmission efficiency and solve efficiently several syndromes that plague the performances of current wireless networks such as performance anomaly, unfairness issues and maladjustment between MAC layer and upper layers. This thesis tackles these issues by combining analytical models, simulations and real experiments. The resulting mechanisms have been developed and integrated into adaptive mobility management communication architecture that delivers high performing communication services to mobile wireless systems, with a focus on WIFI and WIMAX access networks

    Wireless network architecture for future smart grid machine to machine communications

    Get PDF
    Transformation of the conventional power grid into an efficient power delivery network is an important advance that will benefit consumers, business and the environment by providing improved integration of renewable energy, including solar and wind. A reliable, low latency communication system is a fundamental requirement for smart power grids. To achieve bidirectional energy distribution capability and to support diverse Smart Grid (SG) applications, the modern SG requires the capacity to handle the traffic generated by machine to machine (M2M) communication infrastructure. Successful integration of numerous SG applications, renewable energy sources and Electric Vehicles (EVs) into a conventional power grid would not be possible without a communication network that has been designed to support the needs of the new and innovative renewable power generation, distribution and storage technologies. While the legacy communication infrastructure, utilized to support the existing power network, fails to support all of the SG functionalities, Software Defined Networking (SDN), based on wireless communication systems, has the potential to provide an effective solution. SDN offers a range of features that fulfill the unique requirements of the SG applications. Being a new networking paradigm, SDN remains to be implemented for SG M2M communication scenarios and there remain a number of challenges that need to be overcome. M2M communication protocols and standards provide a starting point for the broader development of SG communication networks that can be enhanced by abstracting high-level network functionalities. The aim of this research was to carry out an in-depth study on the future SG communication networks and to propose solutions to identified limitations of existing communication networks. Keeping this intention in mind, the study first focuses on the SG application modeling techniques based on the traffic requirements and power supply load profiles. To address the dynamicity of the traffic model and demand load curve, a series of analytical models and smart algorithms were developed. SG application models were developed and evaluated using a range of scenarios reflecting typical usage. Heterogenous network architectures and efficient traffic models were developed to identify an appropriate wireless communication technology and to maximize the network performance for major SG applications. However, a careful observation of the communication networks ability to manage and control the diverse M2M communications reveals that the inadequate dynamic communication network configuration capability would be a problem for future SG applications. M2M communication protocols and standards provide a starting point for the broader development of SG communication networks that can be enhanced by abstracting high-level network functionalities. To realize the full potential of the SGs and deployment scenarios it is essential to analyze the major applications and key requirements to develop those applications. Also, it might be necessary to select an appropriate communication technology for each of the power system domains. The study first focuses on the SG application modeling techniques based on the traffic requirement and load supply profiles of the power system. To address dynamicity of the traffic model and demand load curve, a series of analytical models and smart algorithms were developed. The developed SG application models were further evaluated using simulation scenarios and a test bed model. The challenge of selecting an appropriate wireless communication technology and maximizing network performance for major SG applications was handled by developing multiple heterogenous network architectures and efficient traffic models. A comprehensive literature review of the state of the art of SG applications and standards was carried out to develop robust network models utilizing diverse communication technologies. The literature survey immensely helped to develop two novel SG application models, Zigbee based Pilot protection scheme for a smart distribution grid and Vehicle to Grid (V2G) smart load management scheme. Application modelling included detail traffic modelling, developing smart algorithms, analytical models, user load profile analysis, simulation models and test bed setups. Furthermore, a novel WiMax Ranging scheme is presented to improve the random-access mechanism for various periodic M2M applications supported by extensive simulation based performance analysis. Future SGs will be overwhelmed by an excessive number of sensor devices that collect various data related to the power system. In a SG Neighborhood Area Network (NAN), wireless sensor networks (WSNs) will play a key role in the development of major SG applications. The application centric WSNs require complex configurations such as well-defined access techniques, transmission and security protocols. Challenges also include development of appropriate routing protocols to tackle resource limitations and delay caused by decentralized WSNs and ad hoc based packet forwarding techniques. A careful observation of manageability and controllability of the diverse M2M network reveals that the inadequate dynamic network configuration capability of the existing SG communication network would be a key bottleneck for future SG. Thus, a novel WSN based communication framework is presented exploiting the emerging SDN networking paradigm. SDN would be beneficial for SGs in many ways. By decoupling the control plane and data forwarding plane, SDN facilitates real-time control and integration of network services and applications that can reach down into the network through the controller hierarchy. A higher degree of control over the overall SG communication network would be achievable via the dynamic programmability provided by SDN. The SDN based WSN network must be robust enough to support the adaptive energy dispatching capacity of the modern power system. The proposed communication framework incorporates novel communication features to separate the control plane and data forwarding plane within the SG communication network. This includes detailed modeling of the control and data plane communication parameters to support both delay sensitive and delay tolerant SG applications. The unique SDN features offers a platform to accommodate maximum number of SG applications with highest controllability and manageability. The performance of the SDN based future SG network is evaluated using a simulation scenario that considers realistic user load profiles, wireless standards, the SG premises geographical area and the state of the art of the SG standards. Although the control plane enables a global view of the data plane and provides a centralized platform to control and deploy new services, physically a single controller in the controller would not be practical for SG networks. The challenges arise in terms of scalability, security and reliability, particularly in a SG environment. To increase the efficiency of the proposed SDN based WSNs for the SG NAN, the study proposed distributed controllers with a comprehensive analytical model that optimizes the number of distributed controllers to enhance performance of the proposed communication framework in the NAN domain. The proposed framework along with the analytical model derive several solutions, such as the minimum number of controllers to support the switches and M2M devices, accommodate SG applications and a differentiated flow processing technique to support all traffic types within the network. Lastly, the study focuses on developing SDN-based application specific traffic models for the smart distribution grid. The thesis focuses on three major issues while developing a future SG communication system. Firstly, its identifies major applications and their traffic requirements at different domains of the SG. Appropriate traffic models were developed by designing robust wireless communication network models. Also, application centric smart optimization techniques are adopted to achieve maximum performance and presented with simulation results, statistical analysis and a test bed result analysis. Secondly, to facilitate the centralized controllability and programmability for supporting diverse SG applications within the SG, a novel WSNs communication framework is presented exploiting the next generation SDN paradigm. Both delay sensitive and delay tolerant SG applications were considered based on the traffic requirement to develop the SDN based WSN communication framework in the SG NAN. Smart algorithms were developed at the SDN based WSN application layer to accommodate a large number of SG applications. The framework feasibility is demonstrated by the simulations carried out to verify the model and provide a statistical analysis. Thirdly, the thesis focuses on developing a novel analytical model that can be used to determine the optimal number of distributed controllers and switches in a SG NAN domain. The proposed application centric traffic modelling techniques, SDN based wireless communication framework and analytical models in this thesis can be adapted for research into other communication networks, particularly those that are begin developed for the Internet of Things and other forms of M2M communications. Also, due to the technology agonistic characteristics of the analytical and traffic models, they can be used in the development of various wireless networks, particularly those that focus on wireless sensor networks, more generally than the broader Internet of Things

    Phobos: The design and implementation of embedded software for a low cost radar warning receiver

    Get PDF
    This portfolio thesis describes work undertaken by the author under the Engineering Doctorate program of the Institute for System Level Integration. It was carried out in conjunction with the sponsor company Teledyne Defence Limited. A radar warning receiver is a device used to detect and identify the emissions of radars. They were originally developed during the Second World War and are found today on a variety of military platforms as part of the platform’s defensive systems. Teledyne Defence has designed and built components and electronic subsystems for the defence industry since the 1970s. This thesis documents part of the work carried out to create Phobos, Teledyne Defence’s first complete radar warning receiver. Phobos was designed to be the first low cost radar warning receiver. This was made possible by the reuse of existing Teledyne Defence products, commercial off the shelf hardware and advanced UK government algorithms. The challenges of this integration are described and discussed, with detail given of the software architecture and the development of the embedded application. Performance of the embedded system as a whole is described and qualified within the context of a low cost system

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Wireless Network Communications Overview for Space Mission Operations

    Get PDF
    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information
    corecore