28 research outputs found

    System-on-Chip design for reliability

    Get PDF

    Methodology and Ecosystem for the Design of a Complex Network ASIC

    Full text link
    Performance of HPC systems has risen steadily. While the 10 Petaflop/s barrier has been breached in the year 2011 the next large step into the exascale era is expected sometime between the years 2018 and 2020. The EXTOLL project will be an integral part in this venture. Originally designed as a research project on FPGA basis it will make the transition to an ASIC to improve its already excelling performance even further. This transition poses many challenges that will be presented in this thesis. Nowadays, it is not enough to look only at single components in a system. EXTOLL is part of complex ecosystem which must be optimized overall since everything is tightly interwoven and disregarding some aspects can cause the whole system either to work with limited performance or even to fail. This thesis examines four different aspects in the design hierarchy and proposes efficient solutions or improvements for each of them. At first it takes a look at the design implementation and the differences between FPGA and ASIC design. It introduces a methodology to equip all on-chip memory with ECC logic automatically without the user’s input and in a transparent way so that the underlying code that uses the memory does not have to be changed. In the next step the floorplanning process is analyzed and an iterative solution is worked out based on physical and logical constraints of the EXTOLL design. Besides, a work flow for collaborative design is presented that allows multiple users to work on the design concurrently. The third part concentrates on the high-speed signal path from the chip to the connector and how it is affected by technological limitations. All constraints are analyzed and a package layout for the EXTOLL chip is proposed that is seen as the optimal solution. The last part develops a cost model for wafer and package level test and raises technological concerns that will affect the testing methodology. In order to run testing internally it proposes the development of a stand-alone test platform that is able to test packaged EXTOLL chips in every aspect

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    System-on-Chip: Reuse and Integration

    Full text link

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH

    Get PDF
    Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved " or "undefined. " Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The Intel ® Xeon ® Processor E5-1600 / E5-2600/E5-4600 Product Families, Intel ® C600 series chipset, and the Intel ® Xeon® Processor E5-1600 / E5-2600/E5-4600 Product Families-based Platform described in this document may contain design defects o

    Dynamic partial reconfiguration management for high performance and reliability in FPGAs

    Get PDF
    Modern Field-Programmable Gate Arrays (FPGAs) are no longer used to implement small “glue logic” circuitries. The high-density of reconfigurable logic resources in today’s FPGAs enable the implementation of large systems in a single chip. FPGAs are highly flexible devices; their functionality can be altered by simply loading a new binary file in their configuration memory. While the flexibility of FPGAs is comparable to General-Purpose Processors (GPPs), in the sense that different functions can be performed using the same hardware, the performance gain that can be achieved using FPGAs can be orders of magnitudes higher as FPGAs offer the ability for customisation of parallel computational architectures. Dynamic Partial Reconfiguration (DPR) allows for changing the functionality of certain blocks on the chip while the rest of the FPGA is operational. DPR has sparked the interest of researchers to explore new computational platforms where computational tasks are off-loaded from a main CPU to be executed using dedicated reconfigurable hardware accelerators configured on demand at run-time. By having a battery of custom accelerators which can be swapped in and out of the FPGA at runtime, a higher computational density can be achieved compared to static systems where the accelerators are bound to fixed locations within the chip. Furthermore, the ability of relocating these accelerators across several locations on the chip allows for the implementation of adaptive systems which can mitigate emerging faults in the FPGA chip when operating in harsh environments. By porting the appropriate fault mitigation techniques in such computational platforms, the advantages of FPGAs can be harnessed in different applications in space and military electronics where FPGAs are usually seen as unreliable devices due to their sensitivity to radiation and extreme environmental conditions. In light of the above, this thesis investigates the deployment of DPR as: 1) a method for enhancing performance by efficient exploitation of the FPGA resources, and 2) a method for enhancing the reliability of systems intended to operate in harsh environments. Achieving optimal performance in such systems requires an efficient internal configuration management system to manage the reconfiguration and execution of the reconfigurable modules in the FPGA. In addition, the system needs to support “fault-resilience” features by integrating parameterisable fault detection and recovery capabilities to meet the reliability standard of fault-tolerant applications. This thesis addresses all the design and implementation aspects of an Internal Configuration Manger (ICM) which supports a novel bitstream relocation model to enable the placement of relocatable accelerators across several locations on the FPGA chip. In addition to supporting all the configuration capabilities required to implement a Reconfigurable Operating System (ROS), the proposed ICM also supports the novel multiple-clone configuration technique which allows for cloning several instances of the same hardware accelerator at the same time resulting in much shorter configuration time compared to traditional configuration techniques. A faulttolerant (FT) version of the proposed ICM which supports a comprehensive faultrecovery scheme is also introduced in this thesis. The proposed FT-ICM is designed with a much smaller area footprint compared to Triple Modular Redundancy (TMR) hardening techniques while keeping a comparable level of fault-resilience. The capabilities of the proposed ICM system are demonstrated with two novel applications. The first application demonstrates a proof-of-concept reliable FPGA server solution used for executing encryption/decryption queries. The proposed server deploys bitstream relocation and modular redundancy to mitigate both permanent and transient faults in the device. It also deploys a novel Built-In Self- Test (BIST) diagnosis scheme, specifically designed to detect emerging permanent faults in the system at run-time. The second application is a data mining application where DPR is used to increase the computational density of a system used to implement the Frequent Itemset Mining (FIM) problem
    corecore