37,381 research outputs found

    DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation

    Full text link
    Dense 3D facial motion capture from only monocular in-the-wild pairs of RGB images is a highly challenging problem with numerous applications, ranging from facial expression recognition to facial reenactment. In this work, we propose DeepFaceFlow, a robust, fast, and highly-accurate framework for the dense estimation of 3D non-rigid facial flow between pairs of monocular images. Our DeepFaceFlow framework was trained and tested on two very large-scale facial video datasets, one of them of our own collection and annotation, with the aid of occlusion-aware and 3D-based loss function. We conduct comprehensive experiments probing different aspects of our approach and demonstrating its improved performance against state-of-the-art flow and 3D reconstruction methods. Furthermore, we incorporate our framework in a full-head state-of-the-art facial video synthesis method and demonstrate the ability of our method in better representing and capturing the facial dynamics, resulting in a highly-realistic facial video synthesis. Given registered pairs of images, our framework generates 3D flow maps at ~60 fps.Comment: to be published in the IEEE conference on Computer Vision and Pattern Recognition (CVPR). 202

    Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation

    Full text link
    Each human face is unique. It has its own shape, topology, and distinguishing features. As such, developing and testing facial tracking systems are challenging tasks. The existing face recognition and tracking algorithms in Computer Vision mainly specify concrete situations according to particular goals and applications, requiring validation methodologies with data that fits their purposes. However, a database that covers all possible variations of external and factors does not exist, increasing researchers' work in acquiring their own data or compiling groups of databases. To address this shortcoming, we propose a methodology for facial data acquisition through definition of fundamental variables, such as subject characteristics, acquisition hardware, and performance parameters. Following this methodology, we also propose two protocols that allow the capturing of facial behaviors under uncontrolled and real-life situations. As validation, we executed both protocols which lead to creation of two sample databases: FdMiee (Facial database with Multi input, expressions, and environments) and FACIA (Facial Multimodal database driven by emotional induced acting). Using different types of hardware, FdMiee captures facial information under environmental and facial behaviors variations. FACIA is an extension of FdMiee introducing a pipeline to acquire additional facial behaviors and speech using an emotion-acting method. Therefore, this work eases the creation of adaptable database according to algorithm's requirements and applications, leading to simplified validation and testing processes.Comment: 10 pages, 6 images, Computers & Graphic

    Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition

    Full text link
    Occlusion and pose variations, which can change facial appearance significantly, are two major obstacles for automatic Facial Expression Recognition (FER). Though automatic FER has made substantial progresses in the past few decades, occlusion-robust and pose-invariant issues of FER have received relatively less attention, especially in real-world scenarios. This paper addresses the real-world pose and occlusion robust FER problem with three-fold contributions. First, to stimulate the research of FER under real-world occlusions and variant poses, we build several in-the-wild facial expression datasets with manual annotations for the community. Second, we propose a novel Region Attention Network (RAN), to adaptively capture the importance of facial regions for occlusion and pose variant FER. The RAN aggregates and embeds varied number of region features produced by a backbone convolutional neural network into a compact fixed-length representation. Last, inspired by the fact that facial expressions are mainly defined by facial action units, we propose a region biased loss to encourage high attention weights for the most important regions. We validate our RAN and region biased loss on both our built test datasets and four popular datasets: FERPlus, AffectNet, RAF-DB, and SFEW. Extensive experiments show that our RAN and region biased loss largely improve the performance of FER with occlusion and variant pose. Our method also achieves state-of-the-art results on FERPlus, AffectNet, RAF-DB, and SFEW. Code and the collected test data will be publicly available.Comment: The test set and the code of this paper will be available at https://github.com/kaiwang960112/Challenge-condition-FER-datase

    Face Expression Recognition and Analysis: The State of the Art

    Full text link
    The automatic recognition of facial expressions has been an active research topic since the early nineties. There have been several advances in the past few years in terms of face detection and tracking, feature extraction mechanisms and the techniques used for expression classification. This paper surveys some of the published work since 2001 till date. The paper presents a time-line view of the advances made in this field, the applications of automatic face expression recognizers, the characteristics of an ideal system, the databases that have been used and the advances made in terms of their standardization and a detailed summary of the state of the art. The paper also discusses facial parameterization using FACS Action Units (AUs) and MPEG-4 Facial Animation Parameters (FAPs) and the recent advances in face detection, tracking and feature extraction methods. Notes have also been presented on emotions, expressions and facial features, discussion on the six prototypic expressions and the recent studies on expression classifiers. The paper ends with a note on the challenges and the future work. This paper has been written in a tutorial style with the intention of helping students and researchers who are new to this field

    On the ethnic classification of Pakistani face using deep learning

    Get PDF

    Towards Fine-grained Human Pose Transfer with Detail Replenishing Network

    Full text link
    Human pose transfer (HPT) is an emerging research topic with huge potential in fashion design, media production, online advertising and virtual reality. For these applications, the visual realism of fine-grained appearance details is crucial for production quality and user engagement. However, existing HPT methods often suffer from three fundamental issues: detail deficiency, content ambiguity and style inconsistency, which severely degrade the visual quality and realism of generated images. Aiming towards real-world applications, we develop a more challenging yet practical HPT setting, termed as Fine-grained Human Pose Transfer (FHPT), with a higher focus on semantic fidelity and detail replenishment. Concretely, we analyze the potential design flaws of existing methods via an illustrative example, and establish the core FHPT methodology by combing the idea of content synthesis and feature transfer together in a mutually-guided fashion. Thereafter, we substantiate the proposed methodology with a Detail Replenishing Network (DRN) and a corresponding coarse-to-fine model training scheme. Moreover, we build up a complete suite of fine-grained evaluation protocols to address the challenges of FHPT in a comprehensive manner, including semantic analysis, structural detection and perceptual quality assessment. Extensive experiments on the DeepFashion benchmark dataset have verified the power of proposed benchmark against start-of-the-art works, with 12\%-14\% gain on top-10 retrieval recall, 5\% higher joint localization accuracy, and near 40\% gain on face identity preservation. Moreover, the evaluation results offer further insights to the subject matter, which could inspire many promising future works along this direction.Comment: IEEE TIP submissio

    Kernel Projection of Latent Structures Regression for Facial Animation Retargeting

    Full text link
    Inspired by kernel methods that have been used extensively in achieving efficient facial animation retargeting, this paper presents a solution to retargeting facial animation in virtual character's face model based on the kernel projection of latent structure (KPLS) regression between semantically similar facial expressions. Specifically, a given number of corresponding semantically similar facial expressions are projected into the latent space. By using the Nonlinear Iterative Partial Least Square method, decomposition of the latent variables is achieved. Finally, the KPLS is achieved by solving a kernalized version of the eigenvalue problem. By evaluating our methodology with other kernel-based solutions, the efficiency of the presented methodology in transferring facial animation to face models with different morphological variations is demonstrated

    M2FPA: A Multi-Yaw Multi-Pitch High-Quality Database and Benchmark for Facial Pose Analysis

    Full text link
    Facial images in surveillance or mobile scenarios often have large view-point variations in terms of pitch and yaw angles. These jointly occurred angle variations make face recognition challenging. Current public face databases mainly consider the case of yaw variations. In this paper, a new large-scale Multi-yaw Multi-pitch high-quality database is proposed for Facial Pose Analysis (M2FPA), including face frontalization, face rotation, facial pose estimation and pose-invariant face recognition. It contains 397,544 images of 229 subjects with yaw, pitch, attribute, illumination and accessory. M2FPA is the most comprehensive multi-view face database for facial pose analysis. Further, we provide an effective benchmark for face frontalization and pose-invariant face recognition on M2FPA with several state-of-the-art methods, including DR-GAN, TP-GAN and CAPG-GAN. We believe that the new database and benchmark can significantly push forward the advance of facial pose analysis in real-world applications. Moreover, a simple yet effective parsing guided discriminator is introduced to capture the local consistency during GAN optimization. Extensive quantitative and qualitative results on M2FPA and Multi-PIE demonstrate the superiority of our face frontalization method. Baseline results for both face synthesis and face recognition from state-of-theart methods demonstrate the challenge offered by this new database.Comment: Accepted for publication at ICCV2019; The M2FPA dataset is available at https://pp2li.github.io/M2FPA-dataset

    Facial Descriptors for Human Interaction Recognition In Still Images

    Full text link
    This paper presents a novel approach in a rarely studied area of computer vision: Human interaction recognition in still images. We explore whether the facial regions and their spatial configurations contribute to the recognition of interactions. In this respect, our method involves extraction of several visual features from the facial regions, as well as incorporation of scene characteristics and deep features to the recognition. Extracted multiple features are utilized within a discriminative learning framework for recognizing interactions between people. Our designed facial descriptors are based on the observation that relative positions, size and locations of the faces are likely to be important for characterizing human interactions. Since there is no available dataset in this relatively new domain, a comprehensive new dataset which includes several images of human interactions is collected. Our experimental results show that faces and scene characteristics contain important information to recognize interactions between people

    Face Hallucination by Attentive Sequence Optimization with Reinforcement Learning

    Full text link
    Face hallucination is a domain-specific super-resolution problem that aims to generate a high-resolution (HR) face image from a low-resolution~(LR) input. In contrast to the existing patch-wise super-resolution models that divide a face image into regular patches and independently apply LR to HR mapping to each patch, we implement deep reinforcement learning and develop a novel attention-aware face hallucination (Attention-FH) framework, which recurrently learns to attend a sequence of patches and performs facial part enhancement by fully exploiting the global interdependency of the image. Specifically, our proposed framework incorporates two components: a recurrent policy network for dynamically specifying a new attended region at each time step based on the status of the super-resolved image and the past attended region sequence, and a local enhancement network for selected patch hallucination and global state updating. The Attention-FH model jointly learns the recurrent policy network and local enhancement network through maximizing a long-term reward that reflects the hallucination result with respect to the whole HR image. Extensive experiments demonstrate that our Attention-FH significantly outperforms the state-of-the-art methods on in-the-wild face images with large pose and illumination variations.Comment: To be published in TPAM
    corecore