507 research outputs found

    VoIP Call Admission Control in WLANs in Presence of Elastic Traffic

    Get PDF
    VoIP service over WLAN networks is a promising alternative to provide mobile voice communications. However, several performance problems appear due to i) heavy protocol overheads, ii) unfairness and asymmetry between the uplink and downlink flows, and iii) the coexistence with other traffic flows. This paper addresses the performance of VoIP communications with simultaneous presence of bidirectional TCP traffic, and shows how the presence of elastic flows drastically reduces the capacity of the system. To solve this limitation a simple solution is proposed using an adaptive Admission and Rate Control algorithm which tunes the BEB (Binary Exponential Backoff) parameters. Analytical results are obtained by using an IEEE 802.11e user centric queuing model based on a bulk service M=G[1;B]=1=K queue, which is able to capture the main dynamics of the EDCA-based traffic differentiation parameters (AIFS, BEB and TXOP). The results show that the improvement achieved by our scheme on the overall VoIP performance is significant

    Performance Modelling and Measurements of TCP Transfer Throughput in 802.11based WLANs

    Get PDF
    The growing popularity of the 802.11 standard for building local wireless networks has generated an extensive literature on the performance modelling of its MAC protocol. However, most of the available studies focus on the throughput analysis in saturation conditions, while very little has been done on investigating the interactions between the 802.11 MAC protocol and closed-loop transport protocols such as TCP. This paper addresses this issue by developing an analytical model to compute the stationary probability distribution of the number of backlogged nodes in a WLAN in the presence of persistent TCP-controlled download and upload data transfers. By embedding the network backlog distribution in the MAC protocol modelling, we can precisely estimate the throughput performance of TCP connections. A large set of experiments conducted in a real network validates the model correctness for a wide range of configurations. A particular emphasis is devoted to investigate and explain the TCP fairness characteristics. Our analytical model and the supporting experimental outcomes demonstrate that using default settings for the capacity of devices\u27 output queues provides a fair allocation of channel bandwidth to the TCP connections, independently of the number of downstream and upstream flows. Furthermore, we show that the TCP total throughput does not degrade by increasing the number of wireless stations

    Stochastic Models of TCP Flows over 802 11 WLANs

    Get PDF
    This technical report develops an analytical framework to model the interaction between TCP and 802:11 MAC protocol over a WLAN, when concurrent TCP downlink and uplink connections are active. Assuming a TCP advertised window equal to one, we formulate a Markov model to characterize the dynamic network contention level, de ned as the expected number of wireless stations having at least a frame to transmit. Exploiting the stochastic characterization of the dynamic contention level induced by the TCP ow control, we develop an accurate model of the MAC protocol behavior to evaluate the TCP throughput performance. Comparison with simulation results validates the model, which provides the analytical basis for the optimization of the system performance. In particular, we prove that using a TCP advertised window equal to one ensures a fair access to the TCP ows of the channel bandwidth, irrespective of the number of TCP downlink or uplink connections. Moreover, we show that the aggregate TCP throughput is almost independent of the number of wireless stations in the network

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    A Novel Voice Priority Queue (VPQ) Schedule and Algorithm for VoIP over WLAN Network

    Get PDF
    The VoIP deployment on Wireless Local Area Networks (WLANs), which is based on IEEE 802.11 standards, is increasing. Currently, many schedulers have been introduced such as Weighted Fair Queueing (WFQ), Strict Priority (SP) General processor sharing (GPS), Deficit Round Robin (DRR), and Contention-Aware Temporally fair Scheduling (CATS). Unfortunately, the current scheduling techniques have some drawbacks on real-time applications and therefore will not be able to handle the VoIP packets in a proper way. The objective of this research is to propose a new scheduler system model for the VoIP application named final stage of Voice Priority Queue (VPQ) scheduler. The scheduler system model is to ensure efficiency by producing a higher throughput and fairness for VoIP packets. In this paper, only the final Stage of the VPQ packet scheduler and its algorithm are presented. Simulation topologies for VoIP traffic were implemented and analyzed using the Network Simulator (NS-2). The results show that this method can achieve a better and more accurate VoIP quality throughput and fairness index over WLANs

    Rigorous and Practical Proportional-fair Allocation for Multi-rate Wi-Fi

    Get PDF
    Recent experimental studies confirm the prevalence of the widely known performance anomaly problem in current Wi-Fi networks, and report on the severe network utility degradation caused by this phenomenon. Although a large body of work addressed this issue, we attribute the refusal of prior solutions to their poor implementation feasibility with off-the-shelf hardware and their impre- cise modelling of the 802.11 protocol. Their applicability is further challenged today by very high throughput enhancements (802.11n/ac) whereby link speeds can vary by two orders of magnitude. Unlike earlier approaches, in this paper we introduce the first rigorous analytical model of 802.11 stations’ throughput and airtime in multi-rate settings, without sacrificing accuracy for tractability. We use the proportional-fair allocation criterion to formulate network utility maximisation as a con- vex optimisation problem for which we give a closed-form solution. We present a fully functional light-weight implementation of our scheme on commodity access points and evaluate this extensively via experiments in a real deployment, over a broad range of network conditions. Results demonstrate that our proposal achieves up to 100% utility gains, can double video streaming goodput and reduces TCP download times by 8x

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad
    corecore