683 research outputs found

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    MIMO Radar Target Localization and Performance Evaluation under SIRP Clutter

    Full text link
    Multiple-input multiple-output (MIMO) radar has become a thriving subject of research during the past decades. In the MIMO radar context, it is sometimes more accurate to model the radar clutter as a non-Gaussian process, more specifically, by using the spherically invariant random process (SIRP) model. In this paper, we focus on the estimation and performance analysis of the angular spacing between two targets for the MIMO radar under the SIRP clutter. First, we propose an iterative maximum likelihood as well as an iterative maximum a posteriori estimator, for the target's spacing parameter estimation in the SIRP clutter context. Then we derive and compare various Cram\'er-Rao-like bounds (CRLBs) for performance assessment. Finally, we address the problem of target resolvability by using the concept of angular resolution limit (ARL), and derive an analytical, closed-form expression of the ARL based on Smith's criterion, between two closely spaced targets in a MIMO radar context under SIRP clutter. For this aim we also obtain the non-matrix, closed-form expressions for each of the CRLBs. Finally, we provide numerical simulations to assess the performance of the proposed algorithms, the validity of the derived ARL expression, and to reveal the ARL's insightful properties.Comment: 34 pages, 12 figure

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Robust Multiple Signal Classification via Probability Measure Transformation

    Full text link
    In this paper, we introduce a new framework for robust multiple signal classification (MUSIC). The proposed framework, called robust measure-transformed (MT) MUSIC, is based on applying a transform to the probability distribution of the received signals, i.e., transformation of the probability measure defined on the observation space. In robust MT-MUSIC, the sample covariance is replaced by the empirical MT-covariance. By judicious choice of the transform we show that: 1) the resulting empirical MT-covariance is B-robust, with bounded influence function that takes negligible values for large norm outliers, and 2) under the assumption of spherically contoured noise distribution, the noise subspace can be determined from the eigendecomposition of the MT-covariance. Furthermore, we derive a new robust measure-transformed minimum description length (MDL) criterion for estimating the number of signals, and extend the MT-MUSIC framework to the case of coherent signals. The proposed approach is illustrated in simulation examples that show its advantages as compared to other robust MUSIC and MDL generalizations

    Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 2: The Under-Sampled Case

    Get PDF
    In the first part of this series of two papers, we extended the expected likelihood approach originally developed in the Gaussian case, to the broader class of complex elliptically symmetric (CES) distributions and complex angular central Gaussian (ACG) distributions. More precisely, we demonstrated that the probability density function (p.d.f.) of the likelihood ratio (LR) for the (unknown) actual scatter matrix \mSigma_{0} does not depend on the latter: it only depends on the density generator for the CES distribution and is distribution-free in the case of ACG distributed data, i.e., it only depends on the matrix dimension MM and the number of independent training samples TT, assuming that T≄MT \geq M. Additionally, regularized scatter matrix estimates based on the EL methodology were derived. In this second part, we consider the under-sampled scenario (T≀MT \leq M) which deserves a specific treatment since conventional maximum likelihood estimates do not exist. Indeed, inference about the scatter matrix can only be made in the TT-dimensional subspace spanned by the columns of the data matrix. We extend the results derived under the Gaussian assumption to the CES and ACG class of distributions. Invariance properties of the under-sampled likelihood ratio evaluated at \mSigma_{0} are presented. Remarkably enough, in the ACG case, the p.d.f. of this LR can be written in a rather simple form as a product of beta distributed random variables. The regularized schemes derived in the first part, based on the EL principle, are extended to the under-sampled scenario and assessed through numerical simulations

    Statistical Modeling of SAR Images: A Survey

    Get PDF
    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last

    The Doppler Spectra of Medium Grazing Angle Sea Clutter; Part 1: Characterisation

    Get PDF
    This paper is concerned with the characterisation of Doppler spectra from high range resolution X-band radar sea clutter observed from an airborne platform over the range of grazing angles, 15° to 45°. It is observed that when looking up or down wind there is a strong correlation between mean Doppler shift and local spectrum intensity. When combined with random fluctuations of spectrum width, these characteristics give the spectra a temporal and spatial variability. This behaviour has previously been observed in low grazing angle data and these results confirm the wider applicability of the models developed using that data. The modelling method is also extended here to capture the bimodal behaviour observed with high intensity returns from breaking waves looking up or down-wind
    • 

    corecore