6 research outputs found

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Robotite halduri alamsüsteemi väljatöötamine tarkvararaamistikule TEMOTO

    Get PDF
    Robots provide an opportunity to spare humans from tasks that are repetitive, require high precision or involve hazardous environments. Robots are often composed of multiple robotic units, such as mobile manipulators that integrate object manipulation and traversal capabilities. Additionally, a group of robots, i.e., multi robot systems, can be utilized for solving a common goal. However, the more elements are added to the system, the more complicated it is to control it. TeMoto is a ROS package intended for developing human-robot collaboration and multi-robot applications where TeMoto Robot Manager (TRM), a subsystem of TeMoto, is designed to unify the control of main robotic components: manipulators, mobile bases and grippers. However the implementation of TRM was incomplete prior to this work, having no functionality for controlling mobile bases and grippers. This thesis extends the functionality of TeMoto Robot Manager by implementing the aforementioned missing features, thus facilitating the integration of compound robots and multi-robot systems. The outcome of this work is demonstrated in an object transportation scenario incorporating a heterogeneous multi-robot system that consists of two manipulators, two grippers, and a mobile base. In estonian: Robotid võimaldavad aidata inimesi ülesannetes mis on eluohtlikud, nõuavad suurt täpsust või on üksluised. Üks terviklik robot koosneb tihtipeale mitme eri funktsionaalsusega alamrobotist, millest näiteks mobiilne manipulaator on kombinatsioon mobiilsest platvormist ja objektide manipuleerimise võimekusega robotist. Roboteid saab rakendada ülesannete lahendamisel ka mitme roboti süsteemina, kuid robotite hulga suurenemisel suureneb ka nende haldamise keerukus. TeMoto on ROSi kimp, mis hõlbustab inimene-robot koostöö ja mitme roboti süsteemide arendamist. Robotite haldur on TeMoto alamsüsteem, mis aitab käsitleda mobiilseid platvorme, manipulaatoreid ja haaratseid ühtse tervikliku robotina. Käesolevale tööle eelnevalt puudus Robotite halduril mobiilsete platvormide ja haaratsite haldamise võimekused, mille väljatöötamine oli antud töö peamiseks eesmärgiks. Töö tulemusena valmis TeMoto Robotite halduri terviklik lahendus, mille funktsionaalsust demonstreeriti objekti transportimise ülesande lahendamisel, kaasates kahest manipulaatorist, kahest haaratsist ja mobiilsest platvormist koosnevat heterogeenset mitme roboti süsteemi

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    内界センサのみを利用した多自由度災害対応ロボットの制御システムに関する研究

    Get PDF
    早大学位記番号:新7803早稲田大

    Robotic Minimally Invasive Tools for Restricted Access Confined Spaces

    Get PDF
    A study has been performed in the design and fabrication of deployable borehole robots into confined spaces. Three robot systems have been developed to perform a visual survey of a subterranean space where for any reason humans could not enter. A 12mm diameter snake arm was designed with a focus on the cable tensions and the failure modes for the components that make the snake arm. An iterative solver was developed to model the snake arm and algorithmically calculate the snake arms optimal length with consideration of the failure modes. A robot was developed to extend the range capabilities of borehole robots using reconfigurable borehole robots based around established actuation and manufacturing techniques. The expected distance and weight requirements of the robot are calculated alongside the forces the robot is required to generate in order to achieve them. The whegged design incorporated into the tracks is also analysed to measure the capability of the robot over rough terrain. Finally, the experiments to find the actual driving forces of the tracks are performed and used to calculate the actual range of the robot in comparison to the target range. The potential of reconfigurable mobile robots for deployment through boreholes is limited by the requirement for conventional gears, motors, and joints. This chapter explores the use of smart materials and innovative manufacturing techniques to form a novel concept of a self-folding robotic joint for a self-assembling robotic system. The design uses shape memory alloys fabricated in laminate structures with heaters to create folding structures
    corecore