27,191 research outputs found

    Compound Semiconductor Materials and Devices

    Get PDF
    Contains table of contents for Part I, table of contents for Section 1, reports on fourteen research projects and a list of publications.Defense Advanced Research Projects Agency/National Center for Integrated Photonics TechnologyFannie and John Hertz Foundation Graduate FellowshipJoint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Graduate FellowshipNTT CorporationNational Science FoundationU.S. Navy - Office of Naval ResearchToshiba CorporationAT&T Bell Laboratories Graduate Fellowshi

    Wide Bandgap Based Devices

    Get PDF
    Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits

    Accurate Band Gaps for Semiconductors from Density Functional Theory

    Get PDF
    An essential issue in developing semiconductor devices for photovoltaics and thermoelectrics is to design materials with appropriate band gaps plus the proper positioning of dopant levels relative to the bands. Local density (LDA) and generalized gradient approximation (GGA) density functionals generally underestimate band gaps for semiconductors and sometimes incorrectly predict a metal. Hybrid functionals that include some exact Hartree-Fock exchange are known to be better. We show here for CuInSe_2, the parent compound of the promising CIGS Cu(In_xGa_(1-x))Se_2 solar devices, that LDA and GGA obtain gaps of 0.0-0.01 eV (experiment is 1.04 eV), while the historically first global hybrid functional, B3PW91, is surprisingly better than B3LYP with band gaps of 1.07 and 0.95 eV, respectively. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a mean average deviation (MAD) of only 0.09 eV, which is substantially better than all modern hybrid functionals

    Quantitative Cathodoluminescence Opens New Areas of Investigation in Semiconductor Research and Production

    Get PDF
    The increasing demand for new opto-electronics devices such as solar cells, laser diodes (LD), and high-brightness light-emitting diodes (HBLED), combined with the economic necessity to achieve lower energy consumption levels and higher device yields, is motivating researchers to develop new materials. The semiconductor industry is actively looking for alternatives to silicon, for example, to address new niche market applications in power devices. Constant efforts employed to reduce production costs are leading manufacturers to grow GaN on silicon substrate, creating new technical challenges, especially regarding the control of defect density on wafer. For all these reasons many studies are being initiated to improve understanding of the fundamental physical properties and behavior of compound semiconductor materials used in quantum wells, quantum dots and nanowire-like structures. Cathodoluminescence (CL) is a spectroscopy method that can generate reliable, quantitative, and stable data for research as well as prepare a basis for quality control during productio
    • …
    corecore