1,774 research outputs found

    Bayesian mapping of brain regions using compound Markov random field priors

    Get PDF
    Human brain mapping, i.e. the detection of functional regions and their connections, has experienced enormous progress through the use of functional magnetic resonance imaging (fMRI). The massive spatio-temporal data sets generated by this imaging technique impose challenging problems for statistical analysis. Many approaches focus on adequate modeling of the temporal component. Spatial aspects are often considered only in a separate postprocessing step, if at all, or modeling is based on Gaussian random fields. A weakness of Gaussian spatial smoothing is possible underestimation of activation peaks or blurring of sharp transitions between activated and non-activated regions. In this paper we suggest Bayesian spatio-temporal models, where spatial adaptivity is improved through inhomogeneous or compound Markov random field priors. Inference is based on an approximate MCMC technique. Performance of our approach is investigated through a simulation study, including a comparison to models based on Gaussian as well as more robust spatial priors in terms of pixelwise and global MSEs. Finally we demonstrate its use by an application to fMRI data from a visual stimulation experiment for assessing activation in visual cortical areas

    Posterior Mean Super-Resolution with a Compound Gaussian Markov Random Field Prior

    Full text link
    This manuscript proposes a posterior mean (PM) super-resolution (SR) method with a compound Gaussian Markov random field (MRF) prior. SR is a technique to estimate a spatially high-resolution image from observed multiple low-resolution images. A compound Gaussian MRF model provides a preferable prior for natural images that preserves edges. PM is the optimal estimator for the objective function of peak signal-to-noise ratio (PSNR). This estimator is numerically determined by using variational Bayes (VB). We then solve the conjugate prior problem on VB and the exponential-order calculation cost problem of a compound Gaussian MRF prior with simple Taylor approximations. In experiments, the proposed method roughly overcomes existing methods.Comment: 5 pages, 20 figures, 1 tables, accepted to ICASSP2012 (corrected 2012/3/23

    Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping

    Get PDF
    Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high-curvature transitions between activated and non-activated brain regions. In this paper, we introduce a class of inhomogeneous Markov random fields (MRF) with spatially adaptive interaction weights in a space-varying coefficient model for fMRI data. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, is carried out through efficient MCMC simulation. An application to fMRI data from a visual stimulation experiment demonstrates the performance of our approach in comparison to Gaussian and robustified non-Gaussian Markov random field models

    Unsupervised bayesian convex deconvolution based on a field with an explicit partition function

    Full text link
    This paper proposes a non-Gaussian Markov field with a special feature: an explicit partition function. To the best of our knowledge, this is an original contribution. Moreover, the explicit expression of the partition function enables the development of an unsupervised edge-preserving convex deconvolution method. The method is fully Bayesian, and produces an estimate in the sense of the posterior mean, numerically calculated by means of a Monte-Carlo Markov Chain technique. The approach is particularly effective and the computational practicability of the method is shown on a simple simulated example

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Convergence of Gaussian quasi-likelihood random fields for ergodic L\'{e}vy driven SDE observed at high frequency

    Full text link
    This paper investigates the Gaussian quasi-likelihood estimation of an exponentially ergodic multidimensional Markov process, which is expressed as a solution to a L\'{e}vy driven stochastic differential equation whose coefficients are known except for the finite-dimensional parameters to be estimated, where the diffusion coefficient may be degenerate or even null. We suppose that the process is discretely observed under the rapidly increasing experimental design with step size hnh_n. By means of the polynomial-type large deviation inequality, convergence of the corresponding statistical random fields is derived in a mighty mode, which especially leads to the asymptotic normality at rate nhn\sqrt{nh_n} for all the target parameters, and also to the convergence of their moments. As our Gaussian quasi-likelihood solely looks at the local-mean and local-covariance structures, efficiency loss would be large in some instances. Nevertheless, it has the practically important advantages: first, the computation of estimates does not require any fine tuning, and hence it is straightforward; second, the estimation procedure can be adopted without full specification of the L\'{e}vy measure.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1121 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modelling and estimation for random fields

    Get PDF
    Caption title.Includes bibliographical references (p. [21]-[22]).Supported by Air Force Office of Scientific Research. AFOSR-89-0276-C Supported by the Army Research Office. DAAL03-92-G-0115Sanjoy K. Mitter

    On sampling methods and annealing algorithms

    Get PDF
    Includes bibliographical references (p. 12-14).Cover title.Research supported by the National Science Foundation. ECS-8910073 Research supported by the Air Force Office of Scientific Research. 89-0276B Research supported by the Army Research Office. DAAL03-86-K-0171Saul B. Gelfand and Sanjoy K. Mitter
    corecore