784 research outputs found

    Incremental learning algorithms and applications

    Get PDF
    International audienceIncremental learning refers to learning from streaming data, which arrive over time, with limited memory resources and, ideally, without sacrificing model accuracy. This setting fits different application scenarios where lifelong learning is relevant, e.g. due to changing environments , and it offers an elegant scheme for big data processing by means of its sequential treatment. In this contribution, we formalise the concept of incremental learning, we discuss particular challenges which arise in this setting, and we give an overview about popular approaches, its theoretical foundations, and applications which emerged in the last years

    The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    LACE: Supporting Privacy-Preserving Data Sharing in Transfer Defect Learning

    Get PDF
    Cross Project Defect Prediction (CPDP) is a field of study where an organization lacking enough local data can use data from other organizations or projects for building defect predictors. Research in CPDP has shown challenges in using ``other\u27\u27 data, therefore transfer defect learning has emerged to improve on the quality of CPDP results. With this new found success in CPDP, it is now increasingly important to focus on the privacy concerns of data owners.;To support CPDP, data must be shared. There are many privacy threats that inhibit data sharing. We focus on sensitive attribute disclosure threats or attacks, where an attacker seeks to associate a record(s) in a data set to its sensitive information. Solutions to this sharing problem comes from the field of Privacy Preserving Data Publishing (PPDP) which has emerged as a means to confuse the efforts of sensitive attribute disclosure attacks and therefore reduce privacy concerns. PPDP covers methods and tools used to disguise raw data for publishing. However, prior work warned that increasing data privacy decreases the efficacy of data mining on privatized data.;The goal of this research is to help encourage organizations and individuals to share their data publicly and/or with each other for research purposes and/or improving the quality of their software product through defect prediction. The contributions of this work allow three benefits for data owners willing to share privatized data: 1) that they are fully aware of the sensitive attribute disclosure risks involved so they can make an informed decision about what to share, 2) they are provided with the ability to privatize their data and have it remain useful, and 3) the ability to work with others to share their data based on what they learn from each others data. We call this private multiparty data sharing.;To achieve these benefits, this dissertation presents LACE (Large-scale Assurance of Confidentiality Environment). LACE incorporates a privacy metric called IPR (Increased Privacy Ratio) which calculates the risk of sensitive attribute disclosure of data through comparing results of queries (attacks) on the original data and a privatized version of that data. LACE also includes a privacy algorithm which uses intelligent instance selection to prune the data to as low as 10% of the original data (thus offering complete privacy to the other 90%). It then mutates the remaining data making it possible that over 70% of sensitive attribute disclosure attacks are unsuccessful. Finally, LACE can facilitate private multiparty data sharing via a unique leader-follower algorithm (developed for this dissertation). The algorithm allows data owners to serially build a privatized data set, by allowing them to only contribute data that are not already in the private cache. In this scenario, each data owner shares even less of their data, some as low as 2%.;The experiments of this thesis, lead to the following conclusion: at least for the defect data studied here, data can be minimized, privatized and shared without a significant degradation in utility. Specifically, in comparative studies with standard privacy models (k-anonymity and data swapping), applied to 10 open-source data sets and 3 proprietary data sets, LACE produces privatized data sets that are significantly smaller than the original data (as low as 2%). As a result LACE offers better protection against sensitive attribute disclosure attacks than other methods

    Semantic multimedia analysis using knowledge and context

    Get PDF
    PhDThe difficulty of semantic multimedia analysis can be attributed to the extended diversity in form and appearance exhibited by the majority of semantic concepts and the difficulty to express them using a finite number of patterns. In meeting this challenge there has been a scientific debate on whether the problem should be addressed from the perspective of using overwhelming amounts of training data to capture all possible instantiations of a concept, or from the perspective of using explicit knowledge about the concepts’ relations to infer their presence. In this thesis we address three problems of pattern recognition and propose solutions that combine the knowledge extracted implicitly from training data with the knowledge provided explicitly in structured form. First, we propose a BNs modeling approach that defines a conceptual space where both domain related evi- dence and evidence derived from content analysis can be jointly considered to support or disprove a hypothesis. The use of this space leads to sig- nificant gains in performance compared to analysis methods that can not handle combined knowledge. Then, we present an unsupervised method that exploits the collective nature of social media to automatically obtain large amounts of annotated image regions. By proving that the quality of the obtained samples can be almost as good as manually annotated images when working with large datasets, we significantly contribute towards scal- able object detection. Finally, we introduce a method that treats images, visual features and tags as the three observable variables of an aspect model and extracts a set of latent topics that incorporates the semantics of both visual and tag information space. By showing that the cross-modal depen- dencies of tagged images can be exploited to increase the semantic capacity of the resulting space, we advocate the use of all existing information facets in the semantic analysis of social media

    Continual learning from stationary and non-stationary data

    Get PDF
    Continual learning aims at developing models that are capable of working on constantly evolving problems over a long-time horizon. In such environments, we can distinguish three essential aspects of training and maintaining machine learning models - incorporating new knowledge, retaining it and reacting to changes. Each of them poses its own challenges, constituting a compound problem with multiple goals. Remembering previously incorporated concepts is the main property of a model that is required when dealing with stationary distributions. In non-stationary environments, models should be capable of selectively forgetting outdated decision boundaries and adapting to new concepts. Finally, a significant difficulty can be found in combining these two abilities within a single learning algorithm, since, in such scenarios, we have to balance remembering and forgetting instead of focusing only on one aspect. The presented dissertation addressed these problems in an exploratory way. Its main goal was to grasp the continual learning paradigm as a whole, analyze its different branches and tackle identified issues covering various aspects of learning from sequentially incoming data. By doing so, this work not only filled several gaps in the current continual learning research but also emphasized the complexity and diversity of challenges existing in this domain. Comprehensive experiments conducted for all of the presented contributions have demonstrated their effectiveness and substantiated the validity of the stated claims
    • …
    corecore