176 research outputs found

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Fuzzy logic:an introduction

    Get PDF

    Some mathematical aspects of fuzzy systems

    Get PDF
    In this work, three topics which are important for the further development of fuzzy systems are chosen to be investigated. First, the mathematical aspects of fuzzy relational equations (FREs) are explored. Solving FREs is one of the most important problems in fuzzy systems. In order to identify the algebraic information of the fuzzy space, two new tools, called fuzzy multiplicative inversion and additive inversion, are proposed. Based on these tools, the relationship among fuzzy vectors in fuzzy space is studied. Analytical expressions of maximum and mean solutions for FREs, and an optimal algorithm for calculating minimum solutions are developed. Second, the possibility of applying functional analysis theory to Takagi-Sugeno (T-S) fuzzy systems design is investigated. Fuzzy transforms, which are based on the generalised Fourier transform in functional analysis, are proposed. It is demonstrated that, mathematically, a T-S fuzzy model is equivalent to a fuzzy transform. Hence the parameters of a T-S fuzzy system can be identified by solving equations constructed using the inner product between membership functions and a given target function. The functional point of view leads to an insight into the behaviour of a fuzzy system. It provides a theoretical basis for exploring improvements to the efficiency of T-S fuzzy modelling. Third, the mathematical aspects of model-based fuzzy control (MBFC) are investigated. MBFC theory is not suitable for general nonlinear systems, due to an implicit linearity assumption. This assumption limits fuzzy controller design to a special case of linear time-varying systems control. To apply MBFC in general nonlinear control, a new stability criterion for general nonlinear fuzzy system is proposed. The mathematical aspects investigated in this research, provide a systematic guidance on issues such as efficient fuzzy systems modelling, balanced "soft" and "hard" computing in fuzzy system design, and applicability of fuzzy control to general nonlinear systems. They serve as a theoretical basis for further development of fuzzy systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Elementary Set Theory

    Get PDF
    This text is appropriate for a course that introduces undergraduates to proofs. The material includes elementary symbolic logic, logical arguments, basic set theory, functions and relations, the real number system, and an introduction to cardinality. The text is intended to be readable for sophomore and better freshmen majoring in mathematics. The source files for the text can be found at https://github.com/RPMillspaugh/SetTheoryhttps://commons.und.edu/oers/1006/thumbnail.jp

    Some mathematical aspects of fuzzy systems

    Get PDF
    In this work, three topics which are important for the further development of fuzzy systems are chosen to be investigated. First, the mathematical aspects of fuzzy relational equations (FREs) are explored. Solving FREs is one of the most important problems in fuzzy systems. In order to identify the algebraic information of the fuzzy space, two new tools, called fuzzy multiplicative inversion and additive inversion, are proposed. Based on these tools, the relationship among fuzzy vectors in fuzzy space is studied. Analytical expressions of maximum and mean solutions for FREs, and an optimal algorithm for calculating minimum solutions are developed. Second, the possibility of applying functional analysis theory to Takagi-Sugeno (T-S) fuzzy systems design is investigated. Fuzzy transforms, which are based on the generalised Fourier transform in functional analysis, are proposed. It is demonstrated that, mathematically, a T-S fuzzy model is equivalent to a fuzzy transform. Hence the parameters of a T-S fuzzy system can be identified by solving equations constructed using the inner product between membership functions and a given target function. The functional point of view leads to an insight into the behaviour of a fuzzy system. It provides a theoretical basis for exploring improvements to the efficiency of T-S fuzzy modelling. Third, the mathematical aspects of model-based fuzzy control (MBFC) are investigated. MBFC theory is not suitable for general nonlinear systems, due to an implicit linearity assumption. This assumption limits fuzzy controller design to a special case of linear time-varying systems control. To apply MBFC in general nonlinear control, a new stability criterion for general nonlinear fuzzy system is proposed. The mathematical aspects investigated in this research, provide a systematic guidance on issues such as efficient fuzzy systems modelling, balanced 'soft' and 'hard' computing in fuzzy system design, and applicability of fuzzy control to general nonlinear systems. They serve as a theoretical basis for further development of fuzzy systems

    Logical models for bounded reasoners

    Get PDF
    This dissertation aims at the logical modelling of aspects of human reasoning, informed by facts on the bounds of human cognition. We break down this challenge into three parts. In Part I, we discuss the place of logical systems for knowledge and belief in the Rationality Debate and we argue for systems that formalize an alternative picture of rationality -- one wherein empirical facts have a key role (Chapter 2). In Part II, we design logical models that encode explicitly the deductive reasoning of a single bounded agent and the variety of processes underlying it. This is achieved through the introduction of a dynamic, resource-sensitive, impossible-worlds semantics (Chapter 3). We then show that this type of semantics can be combined with plausibility models (Chapter 4) and that it can be instrumental in modelling the logical aspects of System 1 (“fast”) and System 2 (“slow”) cognitive processes (Chapter 5). In Part III, we move from single- to multi-agent frameworks. This unfolds in three directions: (a) the formation of beliefs about others (e.g. due to observation, memory, and communication), (b) the manipulation of beliefs (e.g. via acts of reasoning about oneself and others), and (c) the effect of the above on group reasoning. These questions are addressed, respectively, in Chapters 6, 7, and 8. We finally discuss directions for future work and we reflect on the contribution of the thesis as a whole (Chapter 9)
    • 

    corecore