15,656 research outputs found

    SOTER: A Runtime Assurance Framework for Programming Safe Robotics Systems

    Full text link
    The recent drive towards achieving greater autonomy and intelligence in robotics has led to high levels of complexity. Autonomous robots increasingly depend on third party off-the-shelf components and complex machine-learning techniques. This trend makes it challenging to provide strong design-time certification of correct operation. To address these challenges, we present SOTER, a robotics programming framework with two key components: (1) a programming language for implementing and testing high-level reactive robotics software and (2) an integrated runtime assurance (RTA) system that helps enable the use of uncertified components, while still providing safety guarantees. SOTER provides language primitives to declaratively construct a RTA module consisting of an advanced, high-performance controller (uncertified), a safe, lower-performance controller (certified), and the desired safety specification. The framework provides a formal guarantee that a well-formed RTA module always satisfies the safety specification, without completely sacrificing performance by using higher performance uncertified components whenever safe. SOTER allows the complex robotics software stack to be constructed as a composition of RTA modules, where each uncertified component is protected using a RTA module. To demonstrate the efficacy of our framework, we consider a real-world case-study of building a safe drone surveillance system. Our experiments both in simulation and on actual drones show that the SOTER-enabled RTA ensures the safety of the system, including when untrusted third-party components have bugs or deviate from the desired behavior

    Probabilistic Model Checking for Energy Analysis in Software Product Lines

    Full text link
    In a software product line (SPL), a collection of software products is defined by their commonalities in terms of features rather than explicitly specifying all products one-by-one. Several verification techniques were adapted to establish temporal properties of SPLs. Symbolic and family-based model checking have been proven to be successful for tackling the combinatorial blow-up arising when reasoning about several feature combinations. However, most formal verification approaches for SPLs presented in the literature focus on the static SPLs, where the features of a product are fixed and cannot be changed during runtime. This is in contrast to dynamic SPLs, allowing to adapt feature combinations of a product dynamically after deployment. The main contribution of the paper is a compositional modeling framework for dynamic SPLs, which supports probabilistic and nondeterministic choices and allows for quantitative analysis. We specify the feature changes during runtime within an automata-based coordination component, enabling to reason over strategies how to trigger dynamic feature changes for optimizing various quantitative objectives, e.g., energy or monetary costs and reliability. For our framework there is a natural and conceptually simple translation into the input language of the prominent probabilistic model checker PRISM. This facilitates the application of PRISM's powerful symbolic engine to the operational behavior of dynamic SPLs and their family-based analysis against various quantitative queries. We demonstrate feasibility of our approach by a case study issuing an energy-aware bonding network device.Comment: 14 pages, 11 figure

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed
    • …
    corecore