3,796 research outputs found

    Carbon Dioxide Enhanced Oil Recovery

    Get PDF
    Imperial Users onl

    Music Expectation by Cognitive Rule-Mapping

    Get PDF
    Iterative rules appear everywhere in music cognition, creating strong expectations. Consequently, denial of rule projection becomes an important compositional strategy, generating numerous possibilities for musical affect. Other rules enter the musical aesthetic through reflexive game playing. Still other kinds are completely constructivist in nature and may be uncongenial to cognition, requiring much training to be recognized, if at all. Cognitive rules are frequently found in contexts of varied repetition (AA), but they are not necessarily bounded by stylistic similarity. Indeed, rules may be especially relevant in the processing of unfamiliar contexts (AB), where only abstract coding is available. There are many kinds of deduction in music cognition. Typical examples include melodic sequence, partial melodic sequence, and alternating melodic sequence (which produces streaming). These types may coexist in the musical fabric, involving the invocation of both simultaneous and nested rules. Intervallic expansion and reduction in melody also involve higherorder abstractions. Various mirrored forms in music entail rule-mapping as well, although these may be more difficult to perceive than their analogous visual symmetries. Listeners can likewise deduce additivity and subtractivity at work in harmony, tempo, texture, pace, and dynamics. Rhythmic augmentation and diminution, by contrast, rely on multiplication and division. The examples suggest numerous hypotheses for experimental research

    One-dimensional models of disordered quantum wires: general formalism

    Full text link
    In this work we describe, compile and generalize a set of tools that can be used to analyse the electronic properties (distribution of states, nature of states, ...) of one-dimensional disordered compositions of potentials. In particular, we derive an ensemble of universal functional equations which characterize the thermodynamic limit of all one-dimensional models and which only depend formally on the distributions that define the disorder. The equations are useful to obtain relevant quantities of the system such as density of states or localization length in the thermodynamic limit

    A Gaussian Model for Simulated Geomagnetic Field Reversals

    Full text link
    Field reversals are the most spectacular changes in the geomagnetic field but remain little understood. Paleomagnetic data primarily constrain the reversal rate and provide few additional clues. Reversals and excursions are characterized by a low in dipole moment that can last for some 10kyr. Some paleomagnetic records also suggest that the field decreases much slower before an reversals than it recovers afterwards and that the recovery phase may show an overshoot in field intensity. Here we study the dipole moment variations in several extremely long dynamo simulation to statistically explored the reversal and excursion properties. The numerical reversals are characterized by a switch from a high axial dipole moment state to a low axial dipole moment state. When analysing the respective transitions we find that decay and growth have very similar time scales and that there is no overshoot. Other properties are generally similar to paleomagnetic findings. The dipole moment has to decrease to about 30% of its mean to allow for reversals. Grand excursions during which the field intensity drops by a comparable margin are very similar to reversals and likely have the same internal origin. The simulations suggest that both are simply triggered by particularly large axial dipole fluctuations while other field components remain largely unaffected. A model at a particularly large Ekman number shows a second but little Earth-like type of reversals where the total field decays and recovers after some time

    A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time

    Full text link
    Interval Temporal Logic (ITL) is an established temporal formalism for reasoning about time periods. For over 25 years, it has been applied in a number of ways and several ITL variants, axiom systems and tools have been investigated. We solve the longstanding open problem of finding a complete axiom system for basic quantifier-free propositional ITL (PITL) with infinite time for analysing nonterminating computational systems. Our completeness proof uses a reduction to completeness for PITL with finite time and conventional propositional linear-time temporal logic. Unlike completeness proofs of equally expressive logics with nonelementary computational complexity, our semantic approach does not use tableaux, subformula closures or explicit deductions involving encodings of omega automata and nontrivial techniques for complementing them. We believe that our result also provides evidence of the naturalness of interval-based reasoning

    IST Austria Thesis

    Get PDF
    This dissertation concerns the automatic verification of probabilistic systems and programs with arrays by statistical and logical methods. Although statistical and logical methods are different in nature, we show that they can be successfully combined for system analysis. In the first part of the dissertation we present a new statistical algorithm for the verification of probabilistic systems with respect to unbounded properties, including linear temporal logic. Our algorithm often performs faster than the previous approaches, and at the same time requires less information about the system. In addition, our method can be generalized to unbounded quantitative properties such as mean-payoff bounds. In the second part, we introduce two techniques for comparing probabilistic systems. Probabilistic systems are typically compared using the notion of equivalence, which requires the systems to have the equal probability of all behaviors. However, this notion is often too strict, since probabilities are typically only empirically estimated, and any imprecision may break the relation between processes. On the one hand, we propose to replace the Boolean notion of equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical framework for estimating distances between Markov chains based on their simulation runs, and we investigate which distances can be approximated in our framework. On the other hand, we propose to compare systems with respect to a new qualitative logic, which expresses that behaviors occur with probability one or a positive probability. This qualitative analysis is robust with respect to modeling errors and applicable to many domains. In the last part, we present a new quantifier-free logic for integer arrays, which allows us to express counting. Counting properties are prevalent in array-manipulating programs, however they cannot be expressed in the quantified fragments of the theory of arrays. We present a decision procedure for our logic, and provide several complexity results
    • …
    corecore