1,166 research outputs found

    Schedulability Analysis of Distributed Multi-core Avionics Systems with UPPAAL

    Get PDF

    Linearization of CIF Through SOS

    Get PDF
    Linearization is the procedure of rewriting a process term into a linear form, which consist only of basic operators of the process language. This procedure is interesting both from a theoretical and a practical point of view. In particular, a linearization algorithm is needed for the Compositional Interchange Format (CIF), an automaton based modeling language. The problem of devising efficient linearization algorithms is not trivial, and has been already addressed in literature. However, the linearization algorithms obtained are the result of an inventive process, and the proof of correctness comes as an afterthought. Furthermore, the semantic specification of the language does not play an important role on the design of the algorithm. In this work we present a method for obtaining an efficient linearization algorithm, through a step-wise refinement of the SOS rules of CIF. As a result, we show how the semantic specification of the language can guide the implementation of such a procedure, yielding a simple proof of correctness.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications

    Integrating verifiable Assume/Guarantee contracts in UML/SysML

    Get PDF
    International audienceThe compositional approach based on components and driven by requirements is a common method used in the development of critical real-time embedded systems. Since the satisfaction of a requirement is subject to the composition of several components, defining abstract and partial behaviors for components with respect to the point of view of the requirement allows for a manageable design of systems. In this paper we consider such specifications in the form of contracts. A contract for a component is a pair (assumption, guarantee) where the assumption is an abstraction of the component's environment behavior and the guarantee is an abstraction of the component's behavior given that the environment behaves like the assumption. In previous work we have defined a formal contract-based theory for Timed Input/Output Automata with the aim of using it to express the semantics of UML/SysML models. In this paper we propose an extension of the UML/SysML language with a syntax and semantics for contracts and for the relations they must satisfy. Besides the important role that contracts have in design, they can also be used for the verification of requirement satisfaction and for their traceability

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    Composing Families of Timed Automata

    Get PDF
    Featured Timed Automata (FTA) is a formalism that enables the verification of an entire Software Product Line (SPL), by capturing its behavior in a single model instead of product-by-product. However, it disregards compositional aspects inherent to SPL development. This paper introduces Interface FTA (IFTA), which extends FTA with variable interfaces that restrict the way automata can be composed, and with support for transitions with atomic multiple actions, simplifying the design. To support modular composition, a set of Reo connectors are modelled as IFTA. This separation of concerns increases reusability of functionality across products, and simplifies modelling, maintainability, and extension of SPLs. We show how IFTA can be easily translated into FTA and into networks of Timed Automata supported by UPPAAL. We illustrate this with a case study from the electronic government domain.POCI-01-0145-FEDER-016826. NORTE-01-0145-FEDER-00003

    Improving model checking stateful timed CSP with non-zenoness through clock-symmetry reduction

    Get PDF

    Safety Contracts for Timed ReactiveComponents in SysML

    Get PDF
    International audienceA variety of system design and architecture description languages, such as SysML, UML or AADL, allows the decomposition of complex system designs into communicating timed components. In this paper we consider the contract-based specification of such components. A contract is a pair formed of an assumption, which is an abstraction of the component’s environment, and a guarantee, which is an abstraction of the component’s behavior given that the environment behaves according to the assumption. Thus, a contract concentrates on a specific aspect of the component’s functionality and on a subset of its interface, which makes it relatively simpler to specify. Contracts may be used as an aid for hierarchical decomposition during design or for verification of properties of composites. This paper defines contracts for components formalized as a variant of timed input/output automata, introduces compositional results allowing to reason with contracts and shows how contracts can be used in a high-level modeling language (SysML) for specification and verification, based on an example extracted from a real-life system

    Reconfigurable component connectors

    Get PDF
    • …
    corecore