8,597 research outputs found

    Extending Compositional Message Sequence Graphs

    Get PDF
    We extend the formal developments for message sequence charts (MSCs) to support scenarios with lost and found messages. We define a notion of extended compositional message sequence charts (ECMSCs) which subsumes the notion of compositional message sequence charts in expressive power but additionally allows to define lost and found messages explicitly. As usual, ECMSCs might be combined by means of choice and repetition towards (extended) compositional message sequence graphs. We show that - despite extended expressive power - model checking of monadic second-order logic (MSO) for this framework remains to be decidable. The key technique to achieve our results is to use an extended notion for linearizations

    Compositional Message Sequence Charts (CMSCs) Are Better to Implement Than MSCs

    Full text link
    Abstract. Communicating Finite States Machines (CFMs) and Mes-sage Sequence Graphs (MSC-graphs for short) are two popular spec-ification formalisms for communicating systems. MSC-graphs capture requirements (scenarios), hence they are the starting point of the de-sign process. Implementing an MSC-graph means obtaining an equiva-lent deadlock-free CFM, since CFMs correspond to distributed message-passing algorithms. Several partial answers for the implementation have been proposed. E.g., local-choice MSC-graphs form a subclass of deadlock-free CFM: Testing equivalence with some local-choice MSC-graph is thus a partial answer to the implementation problem. Using Compositional MSCs, we propose a new algorithm which captures more implementable models than with MSCs. Furthermore, the size of the implementation is reduced by one exponential.

    Realizing live sequence charts in SystemVerilog.

    Get PDF
    The design of an embedded control system starts with an investigation of properties and behaviors of the process evolving within its environment, and an analysis of the requirement for its safety performance. In early stages, system requirements are often specified as scenarios of behavior using sequence charts for different use cases. This specification must be precise, intuitive and expressive enough to capture different aspects of embedded control systems. As a rather rich and useful extension to the classical message sequence charts, live sequence charts (LSC), which provide a rich collection of constructs for specifying both possible and mandatory behaviors, are very suitable for designing an embedded control system. However, it is not a trivial task to realize a high-level design model in executable program codes effectively and correctly. This paper tackles the challenging task by providing a mapping algorithm to automatically synthesize SystemVerilog programs from given LSC specifications

    A Chart Semantics for the Pi-Calculus

    Get PDF
    We present a graphical semantics for the pi-calculus, that is easier to visualize and better suited to expressing causality and temporal properties than conventional relational semantics. A pi-chart is a finite directed acyclic graph recording a computation in the pi-calculus. Each node represents a process, and each edge either represents a computation step, or a message-passing interaction. Pi-charts enjoy a natural pictorial representation, akin to message sequence charts, in which vertical edges represent control flow and horizontal edges represent data flow based on message passing. A pi-chart represents a single computation starting from its top (the nodes with no ancestors) to its bottom (the nodes with no descendants). Unlike conventional reductions or transitions, the edges in a pi-chart induce ancestry and other causal relations on processes. We give both compositional and operational definitions of pi-charts, and illustrate the additional expressivity afforded by the chart semantics via a series of examples

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    Actor Network Procedures as Psi-calculi for Security Ceremonies

    Full text link
    The actor network procedures of Pavlovic and Meadows are a recent graphical formalism developed for describing security ceremonies and for reasoning about their security properties. The present work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework. Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-calculi are operational and largely non-graphical, but have strong foundation based on the theory of nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for security ceremonies. At the same time, this work provides more insight into the details of the ANPs formalization and the graphical representation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network
    corecore