13,623 research outputs found

    Visual Question Answering: A Survey of Methods and Datasets

    Full text link
    Visual Question Answering (VQA) is a challenging task that has received increasing attention from both the computer vision and the natural language processing communities. Given an image and a question in natural language, it requires reasoning over visual elements of the image and general knowledge to infer the correct answer. In the first part of this survey, we examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to connect the visual and textual modalities. In particular, we examine the common approach of combining convolutional and recurrent neural networks to map images and questions to a common feature space. We also discuss memory-augmented and modular architectures that interface with structured knowledge bases. In the second part of this survey, we review the datasets available for training and evaluating VQA systems. The various datatsets contain questions at different levels of complexity, which require different capabilities and types of reasoning. We examine in depth the question/answer pairs from the Visual Genome project, and evaluate the relevance of the structured annotations of images with scene graphs for VQA. Finally, we discuss promising future directions for the field, in particular the connection to structured knowledge bases and the use of natural language processing models.Comment: 25 page

    Structure Learning for Neural Module Networks

    Full text link
    Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that involve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules
    • …
    corecore