768 research outputs found

    Deep-LK for Efficient Adaptive Object Tracking

    Full text link
    In this paper we present a new approach for efficient regression based object tracking which we refer to as Deep- LK. Our approach is closely related to the Generic Object Tracking Using Regression Networks (GOTURN) framework of Held et al. We make the following contributions. First, we demonstrate that there is a theoretical relationship between siamese regression networks like GOTURN and the classical Inverse-Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN IC-LK adapts its regressor to the appearance of the currently tracked frame. We argue that this missing property in GOTURN can be attributed to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking - which we refer to as Deep-LK - that is inspired by the IC-LK framework. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN. Additionally, we demonstrate comparable tracking performance to current state of the art deep-trackers whilst being an order of magnitude (i.e. 100 FPS) computationally efficient

    Compositional Convolutional Neural Networks: A Deep Architecture with Innate Robustness to Partial Occlusion

    Full text link
    Recent findings show that deep convolutional neural networks (DCNNs) do not generalize well under partial occlusion. Inspired by the success of compositional models at classifying partially occluded objects, we propose to integrate compositional models and DCNNs into a unified deep model with innate robustness to partial occlusion. We term this architecture Compositional Convolutional Neural Network. In particular, we propose to replace the fully connected classification head of a DCNN with a differentiable compositional model. The generative nature of the compositional model enables it to localize occluders and subsequently focus on the non-occluded parts of the object. We conduct classification experiments on artificially occluded images as well as real images of partially occluded objects from the MS-COCO dataset. The results show that DCNNs do not classify occluded objects robustly, even when trained with data that is strongly augmented with partial occlusions. Our proposed model outperforms standard DCNNs by a large margin at classifying partially occluded objects, even when it has not been exposed to occluded objects during training. Additional experiments demonstrate that CompositionalNets can also localize the occluders accurately, despite being trained with class labels only. The code used in this work is publicly available.Comment: CVPR 2020; Code is available https://github.com/AdamKortylewski/CompositionalNets; Supplementary material: https://adamkortylewski.com/data/compnet_supp.pd

    Amodal Segmentation through Out-of-Task and Out-of-Distribution Generalization with a Bayesian Model

    Full text link
    Amodal completion is a visual task that humans perform easily but which is difficult for computer vision algorithms. The aim is to segment those object boundaries which are occluded and hence invisible. This task is particularly challenging for deep neural networks because data is difficult to obtain and annotate. Therefore, we formulate amodal segmentation as an out-of-task and out-of-distribution generalization problem. Specifically, we replace the fully connected classifier in neural networks with a Bayesian generative model of the neural network features. The model is trained from non-occluded images using bounding box annotations and class labels only, but is applied to generalize out-of-task to object segmentation and to generalize out-of-distribution to segment occluded objects. We demonstrate how such Bayesian models can naturally generalize beyond the training task labels when they learn a prior that models the object's background context and shape. Moreover, by leveraging an outlier process, Bayesian models can further generalize out-of-distribution to segment partially occluded objects and to predict their amodal object boundaries. Our algorithm outperforms alternative methods that use the same supervision by a large margin, and even outperforms methods where annotated amodal segmentations are used during training, when the amount of occlusion is large. Code is publically available at https://github.com/YihongSun/Bayesian-Amodal

    Siamese Instance Search for Tracking

    Get PDF
    In this paper we present a tracker, which is radically different from state-of-the-art trackers: we apply no model updating, no occlusion detection, no combination of trackers, no geometric matching, and still deliver state-of-the-art tracking performance, as demonstrated on the popular online tracking benchmark (OTB) and six very challenging YouTube videos. The presented tracker simply matches the initial patch of the target in the first frame with candidates in a new frame and returns the most similar patch by a learned matching function. The strength of the matching function comes from being extensively trained generically, i.e., without any data of the target, using a Siamese deep neural network, which we design for tracking. Once learned, the matching function is used as is, without any adapting, to track previously unseen targets. It turns out that the learned matching function is so powerful that a simple tracker built upon it, coined Siamese INstance search Tracker, SINT, which only uses the original observation of the target from the first frame, suffices to reach state-of-the-art performance. Further, we show the proposed tracker even allows for target re-identification after the target was absent for a complete video shot.Comment: This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition, 201
    • …
    corecore