208 research outputs found

    C์˜ ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™” ์กฐํ™”์‹œํ‚ค๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ํ—ˆ์ถฉ๊ธธ.์ฃผ๋ฅ˜ C ์ปดํŒŒ์ผ๋Ÿฌ๋“ค์€ ํ”„๋กœ๊ทธ๋žจ์˜ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๊ณต๊ฒฉ์ ์ธ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ๊ทธ๋Ÿฐ ์ตœ์ ํ™”๋Š” ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ํ–‰๋™์„ ๋ฐ”๊พธ๊ธฐ๋„ ํ•œ๋‹ค. ๋ถˆํ–‰ํžˆ๋„ C ์–ธ์–ด๋ฅผ ๋””์ž์ธํ•  ๋•Œ ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ์กฐํ™”์‹œํ‚ค๊ฐ€ ๊ต‰์žฅํžˆ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์ด ํ•™๊ณ„์™€ ์—…๊ณ„์˜ ์ค‘๋ก ์ด๋‹ค. ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ์„ ์œ„ํ•ด์„œ๋Š”, ๊ทธ๋Ÿฌํ•œ ๊ธฐ๋Šฅ์ด ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์— ์‚ฌ์šฉ๋˜๋Š” ํŒจํ„ด์„ ์ž˜ ์ง€์›ํ•ด์•ผ ํ•œ๋‹ค. ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด์„œ๋Š”, ์ฃผ๋ฅ˜ ์ปดํŒŒ์ผ๋Ÿฌ๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณต์žกํ•˜๊ณ ๋„ ํšจ๊ณผ์ ์ธ ์ตœ์ ํ™”๋ฅผ ์ž˜ ์ง€์›ํ•ด์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ๋™์‹œ์— ์ž˜ ์ง€์›ํ•˜๋Š” ์‹คํ–‰์˜๋ฏธ๋Š” ์˜ค๋Š˜๋‚ ๊นŒ์ง€ ์ œ์•ˆ๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์€ ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์—์„œ ์š”๊ธดํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜๋Š” ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ฃผ์š”ํ•œ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ์กฐํ™”์‹œํ‚จ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฐ ๋‹ค์Œ ์„ฑ์งˆ์„ ๋งŒ์กฑํ•˜๋Š” ๋Š์Šจํ•œ ๋™์‹œ์„ฑ, ๋ถ„ํ•  ์ปดํŒŒ์ผ, ์ •์ˆ˜-ํฌ์ธํ„ฐ ๋ณ€ํ™˜์˜ ์‹คํ–‰์˜๋ฏธ๋ฅผ ์ฒ˜์Œ์œผ๋กœ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ๊ธฐ๋Šฅ์ด ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํŒจํ„ด๊ณผ, ๊ทธ๋Ÿฌํ•œ ํŒจํ„ด์„ ๋…ผ์ฆํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•์„ ์ง€์›ํ•œ๋‹ค. ๋‘˜์งธ, ์ฃผ์š”ํ•œ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋“ค์„ ์ง€์›ํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ์‹คํ–‰์˜๋ฏธ์— ์ž์‹ ๊ฐ์„ ์–ป๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ฒฐ๊ณผ๋ฅผ ๋Œ€๋ถ€๋ถ„ Coq ์ฆ๋ช…๊ธฐ ์œ„์—์„œ ์ฆ๋ช…ํ•˜๊ณ , ๊ทธ ์ฆ๋ช…์„ ๊ธฐ๊ณ„์ ์ด๊ณ  ์—„๋ฐ€ํ•˜๊ฒŒ ํ™•์ธํ–ˆ๋‹ค.To improve the performance of C programs, mainstream compilers perform aggressive optimizations that may change the behaviors of programs that use low-level features in unidiomatic ways. Unfortunately, despite many years of research and industrial efforts, it has proven very difficult to adequately balance the conflicting criteria for low-level features and compiler optimizations in the design of the C programming language. On the one hand, C should support the common usage patterns of the low-level features in systems programming. On the other hand, C should also support the sophisticated and yet effective optimizations performed by mainstream compilers. None of the existing proposals for C semantics, however, sufficiently support low-level features and compiler optimizations at the same time. In this dissertation, we resolve the conflict between some of the low-level features crucially used in systems programming and major compiler optimizations. Specifically, we develop the first formal semantics of relaxed-memory concurrency, separate compilation, and cast between integers and pointers that (1) supports their common usage patterns and reasoning principles for programmers, and (2) provably validates major compiler optimizations at the same time. To establish confidence in our formal semantics, we have formalized most of our key results in the Coq theorem prover, which automatically and rigorously checks the validity of the results.Abstract Acknowledgements Chapter I Prologue Chapter II Relaxed-Memory Concurrency Chapter III Separate Compilation and Linking Chapter IV Cast between Integers and Pointers Chapter V Epilogue ์ดˆ๋กDocto

    A New Verified Compiler Backend for CakeML

    Get PDF
    We have developed and mechanically verified a new compiler backend for CakeML. Our new compiler features a sequence of intermediate languages that allows it to incrementally compile away high-level features and enables verification at the right levels of semantic detail. In this way, it resembles mainstream (unverified) compilers for strict functional languages. The compiler supports efficient curried multi-argument functions, configurable data representations, exceptions that unwind the call stack, register allocation, and more. The compiler targets several architectures: x86-64, ARMv6, ARMv8, MIPS-64, and RISC-V. In this paper, we present the overall structure of the compiler, including its 12 intermediate languages, and explain how everything fits together. We focus particularly on the interaction between the verification of the register allocator and the garbage collector, and memory representations. The entire development has been carried out within the HOL4 theorem prover.Engineering and Physical Sciences Research Counci

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    Secure Compilation (Dagstuhl Seminar 18201)

    Get PDF
    Secure compilation is an emerging field that puts together advances in security, programming languages, verification, systems, and hardware architectures in order to devise secure compilation chains that eliminate many of today\u27s vulnerabilities. Secure compilation aims to protect a source language\u27s abstractions in compiled code, even against low-level attacks. For a concrete example, all modern languages provide a notion of structured control flow and an invoked procedure is expected to return to the right place. However, today\u27s compilation chains (compilers, linkers, loaders, runtime systems, hardware) cannot efficiently enforce this abstraction: linked low-level code can call and return to arbitrary instructions or smash the stack, blatantly violating the high-level abstraction. The emerging secure compilation community aims to address such problems by devising formal security criteria, efficient enforcement mechanisms, and effective proof techniques. This seminar strived to take a broad and inclusive view of secure compilation and to provide a forum for discussion on the topic. The goal was to identify interesting research directions and open challenges by bringing together people working on building secure compilation chains, on developing proof techniques and verification tools, and on designing security mechanisms

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Verified Compilers for a Multi-Language World

    Get PDF
    Though there has been remarkable progress on formally verified compilers in recent years, most of these compilers suffer from a serious limitation: they are proved correct under the assumption that they will only be used to compile whole programs. This is an unrealistic assumption since most software systems today are comprised of components written in different languages - both typed and untyped - compiled by different compilers to a common target, as well as low-level libraries that may be handwritten in the target language. We are pursuing a new methodology for building verified compilers for today\u27s world of multi-language software. The project has two central themes, both of which stem from a view of compiler correctness as a language interoperability problem. First, to specify correctness of component compilation, we require that if a source component s compiles to target component t, then t linked with some arbitrary target code t\u27 should behave the same as s interoperating with t\u27. The latter demands a formal semantics of interoperability between the source and target languages. Second, to enable safe interoperability between components compiled from languages as different as ML, Rust, Python, and C, we plan to design a gradually type-safe target language based on LLVM that supports safe interoperability between more precisely typed, less precisely typed, and type-unsafe components. Our approach opens up a new avenue for exploring sensible language interoperability while also tackling compiler correctness
    • โ€ฆ
    corecore