125 research outputs found

    A tutorial on interactive Markov chains

    Get PDF
    Interactive Markov chains (IMCs) constitute a powerful sto- chastic model that extends both continuous-time Markov chains and labelled transition systems. IMCs enable a wide range of modelling and analysis techniques and serve as a semantic model for many industrial and scientific formalisms, such as AADL, GSPNs and many more. Applications cover various engineering contexts ranging from industrial system-on-chip manufacturing to satellite designs. We present a survey of the state-of-the-art in modelling and analysis of IMCs.\ud We cover a set of techniques that can be utilised for compositional modelling, state space generation and reduction, and model checking. The significance of the presented material and corresponding tools is highlighted through multiple case studies

    Decision algorithms for modelling, optimal control and veriïŹcation of probabilistic systems

    Get PDF
    Markov Decision Processes (MDPs) constitute a mathematical framework for modelling systems featuring both probabilistic and nondeterministic behaviour. They are widely used to solve sequential decision making problems and applied successfully in operations research, arti?cial intelligence, and stochastic control theory, and have been extended conservatively to the model of probabilistic automata in the context of concurrent probabilistic systems. However, when modeling a physical system they suffer from several limitations. One of the most important is the inherent loss of precision that is introduced by measurement errors and discretization artifacts which necessarily happen due to incomplete knowledge about the system behavior. As a result, the true probability distribution for transitions is in most cases an uncertain value, determined by either external parameters or con?dence intervals. Interval Markov decision processes (IMDPs) generalize classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that re?ects the absence of precise knowledge concerning transition probabilities. In this dissertation, we focus on decision algorithms for modelling and performance evaluation of such probabilistic systems leveraging techniques from mathematical optimization. From a modelling viewpoint, we address probabilistic bisimulations to reduce the size of the system models while preserving the logical properties they satisfy. We also discuss the key ingredients to construct systems by composing them out of smaller components running in parallel. Furthermore, we introduce a novel stochastic model, Uncertain weighted Markov Decision Processes (UwMDPs), so as to capture quantities like preferences or priorities in a nondeterministic scenario with uncertainties. This model is close to the model of IMDPs but more convenient to work with in the context of bisimulation minimization. From a performance evaluation perspective, we consider the problem of multi-objective robust strategy synthesis for IMDPs, where the aim is to ?nd a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. In this respect, we discuss the computational complexity of the problem and present a value iteration-based decision algorithm to approximate the Pareto set of achievable optimal points. Moreover, we consider the problem of computing maximal/minimal reward-bounded reachability probabilities on UwMDPs, for which we present an ef?cient algorithm running in pseudo-polynomial time. We demonstrate the practical effectiveness of our proposed approaches by applying them to a collection of real-world case studies using several prototypical tools.Markov-Entscheidungsprozesse (MEPe) bilden den Rahmen fĂŒr die Modellierung von Systemen, die sowohl stochastisches als auch nichtdeterministisches Verhalten beinhalten. Diese Modellklasse hat ein breites Anwendungsfeld in der Lösung sequentieller Entscheidungsprobleme und wird erfolgreich in der Operationsforschung, der kĂŒnstlichen Intelligenz und in der stochastischen Kontrolltheorie eingesetzt. Im Bereich der nebenlĂ€u?gen probabilistischen Systeme wurde sie konservativ zu probabilistischen Automaten erweitert. Verwendet man MEPe jedoch zur Modellierung physikalischer Systeme so zeigt es sich, dass sie an einer Reihe von EinschrĂ€nkungen leiden. Eines der schwerwiegendsten Probleme ist, dass das tatsĂ€chliche Verhalten des betrachteten Systems zumeist nicht vollstĂ€ndig bekannt ist. Durch Messfehler und Diskretisierungsartefakte ist ein Verlust an Genauigkeit unvermeidbar. Die tatsĂ€chlichen Übergangswahrscheinlichkeitsverteilungen des Systems sind daher in den meisten FĂ€llen nicht exakt bekannt, sondern hĂ€ngen von Ă€ußeren Faktoren ab oder können nur durch Kon?denzintervalle erfasst werden. Intervall Markov-Entscheidungsprozesse (IMEPe) verallgemeinern klassische MEPe dadurch, dass die möglichen Übergangswahrscheinlichkeitsverteilungen durch Intervalle ausgedrĂŒckt werden können. IMEPe sind daher ein mĂ€chtiges Modellierungswerkzeug fĂŒr probabilistische Systeme mit unbestimmtem Verhalten, dass sich dadurch ergibt, dass das exakte Verhalten des realen Systems nicht bekannt ist. In dieser Doktorarbeit konzentrieren wir uns auf Entscheidungsverfahren fĂŒr die Modellierung und die Auswertung der Eigenschaften solcher probabilistischer Systeme indem wir Methoden der mathematischen Optimierung einsetzen. Im Bereich der Modellierung betrachten wir probabilistische Bisimulation um die GrĂ¶ĂŸe des Systemmodells zu reduzieren wĂ€hrend wir gleichzeitig die logischen Eigenschaften erhalten. Wir betrachten außerdem die SchlĂŒsseltechniken um Modelle aus kleineren Komponenten, die parallel ablaufen, kompositionell zu generieren. Weiterhin fĂŒhren wir eine neue Art von stochastischen Modellen ein, sogenannte Unsichere Gewichtete Markov-Entscheidungsprozesse (UgMEPe), um Eigenschaften wie Implementierungsentscheidungen und BenutzerprioritĂ€ten in einem nichtdeterministischen Szenario ausdrĂŒcken zu können. Dieses Modell Ă€hnelt IMEPe, ist aber besser fĂŒr die Minimierung bezĂŒglich Bisimulation geeignet. Im Bereich der Auswertung von Modelleigenschaften betrachten wir das Problem, Strategien zu generieren, die in der Lage sind den Nichtdeterminismus so aufzulösen, dass mehrere gewĂŒnschte Eigenschaften gleichzeitig erfĂŒllt werden können, wobei jede mögliche Auswahl von Wahrscheinlichkeitsverteilungen aus den Übergangsintervallen zu respektieren ist. Wir betrachten die KomplexitĂ€tsklasse dieses Problems und diskutieren einen auf Werte-Iteration beruhenden Algorithmus um die Pareto-Menge der erreichbaren optimalen Punkte anzunĂ€hern. Weiterhin betrachten wir das Problem, minimale und maximale Erreichbarkeitswahrscheinlichkeiten zu berechnen, wenn wir eine obere Grenze fĂŒr dieakkumulierten Pfadkosten einhalten mĂŒssen. FĂŒr dieses Problem diskutieren wir einen ef?zienten Algorithmus mit pseudopolynomieller Zeit. Wir zeigen die Ef?zienz unserer AnsĂ€tze in der Praxis, indem wir sie prototypisch implementieren und auf eine Reihe von realistischen Fallstudien anwenden

    Distributed Markovian Bisimulation Reduction aimed at CSL Model Checking

    Get PDF
    The verification of quantitative aspects like performance and dependability by means of model checking has become an important and vivid area of research over the past decade.\ud \ud An important result of that research is the logic CSL (continuous stochastic logic) and its corresponding model checking algorithms. The evaluation of properties expressed in CSL makes it necessary to solve large systems of linear (differential) equations, usually by means of numerical analysis. Both the inherent time and space complexity of the numerical algorithms make it practically infeasible to model check systems with more than 100 million states, whereas realistic system models may have billions of states.\ud \ud To overcome this severe restriction, it is important to be able to replace the original state space with a probabilistically equivalent, but smaller one. The most prominent equivalence relation is bisimulation, for which also a stochastic variant exists (Markovian bisimulation). In many cases, this bisimulation allows for a substantial reduction of the state space size. But, these savings in space come at the cost of an increased time complexity. Therefore in this paper a new distributed signature-based algorithm for the computation of the bisimulation quotient of a given state space is introduced.\ud \ud To demonstrate the feasibility of our approach in both a sequential, and more important, in a distributed setting, we have performed a number of case studies

    Model checking probabilistic and stochastic extensions of the pi-calculus

    Get PDF
    We present an implementation of model checking for probabilistic and stochastic extensions of the pi-calculus, a process algebra which supports modelling of concurrency and mobility. Formal verification techniques for such extensions have clear applications in several domains, including mobile ad-hoc network protocols, probabilistic security protocols and biological pathways. Despite this, no implementation of automated verification exists. Building upon the pi-calculus model checker MMC, we first show an automated procedure for constructing the underlying semantic model of a probabilistic or stochastic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for processes of a specific structure a more efficient, compositional approach is applicable, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level modular description for the PRISM tool. The feasibility of our techniques is demonstrated through a number of case studies from the pi-calculus literature

    Lumpability for Uncertain Continuous-Time Markov Chains

    Get PDF
    The assumption of perfect knowledge of rate parameters in continuous-time Markov chains (CTMCs) is undermined when confronted with reality, where they may be uncertain due to lack of information or because of measurement noise. In this paper we consider uncertain CTMCs, where rates are assumed to vary non-deterministically with time from bounded continuous intervals. This leads to a semantics which associates each state with the reachable set of its probability under all possible choices of the uncertain rates. We develop a notion of lumpability which identifies a partition of states where each block preserves the reachable set of the sum of its probabilities, essentially lifting the well-known CTMC ordinary lumpability to the uncertain setting. We proceed with this analogy with two further contributions: a logical characterization of uncertain CTMC lumping in terms of continuous stochastic logic; and a polynomial time and space algorithm for the minimization of uncertain CTMCs by partition refinement, using the CTMC lumping algorithm as an inner step. As a case study, we show that the minimizations in a substantial number of CTMC models reported in the literature are robust with respect to uncertainties around their original, fixed, rate values

    Quantitative Timed Analysis of Interactive Markov Chains

    Get PDF
    Abstract This paper presents new algorithms and accompanying tool support for analyzing interactive Markov chains (IMCs), a stochastic timed 1 1 2-player game in which delays are exponentially distributed. IMCs are compositional and act as semantic model for engineering for-malisms such as AADL and dynamic fault trees. We provide algorithms for determining the extremal expected time of reaching a set of states, and the long-run average of time spent in a set of states. The prototypical tool Imca supports these algorithms as well as the synthesis of Δ-optimal piecewise constant timed policies for timed reachability objectives. Two case studies show the feasibility and scalability of the algorithms.
    • 

    corecore