5,523 research outputs found

    Words by convention

    Get PDF
    Existing metasemantic projects presuppose that word- (or sentence-) types are part of the non-semantic base. We propose a new strategy: an endogenous account of word types, that is, one where word types are fixed as part of the metasemantics. On this view, it is the conventions of truthfulness and trust that ground not only the meaning of the words (meaning by convention) but also what the word type is of each particular token utterance (words by convention). The same treatment extends to identifying the populations through which the conventions prevail. We consider whether this proposal leads to new underdetermination challenges for metasemantics, and make a case that it does not

    Probabilistic Approach to Epistemic Modals in the Framework of Dynamic Semantics

    Get PDF
    In dynamic semantics meaning of a statement is not equated with its truth conditions but with its context change potential. It has also been claimed that dynamic framework can automatically account for certain paradoxes that involve epistemic modals, such as the following one: it seems odd and incoherent to claim: (1) “It is raining and it might not rain”, whereas claiming (2) “It might not rain and it is raining” does not seem equally odd (Yalcin, 2007). Nevertheless, it seems that it cannot capture the fact that statement (2) seems odd as well, even though not as odd as the statement (1) (Gauker, 2007). I will argue that certain probabilistic extensions to the dynamic model can account for this subtlety of our linguistic intuitions and represent if not an improved than at least an alternative framework for capturing the way contexts are updated and beliefs revised with uncertain information.Numer został przygotowany przy wsparciu Ministerstwa Nauki i Szkolnictwa Wyższego

    Quantum Alternation: Prospects and Problems

    Full text link
    We propose a notion of quantum control in a quantum programming language which permits the superposition of finitely many quantum operations without performing a measurement. This notion takes the form of a conditional construct similar to the IF statement in classical programming languages. We show that adding such a quantum IF statement to the QPL programming language simplifies the presentation of several quantum algorithms. This motivates the possibility of extending the denotational semantics of QPL to include this form of quantum alternation. We give a denotational semantics for this extension of QPL based on Kraus decompositions rather than on superoperators. Finally, we clarify the relation between quantum alternation and recursion, and discuss the possibility of lifting the semantics defined by Kraus operators to the superoperator semantics defined by Selinger.Comment: In Proceedings QPL 2015, arXiv:1511.0118
    corecore