11,821 research outputs found

    Learned Perceptual Image Enhancement

    Full text link
    Learning a typical image enhancement pipeline involves minimization of a loss function between enhanced and reference images. While L1 and L2 losses are perhaps the most widely used functions for this purpose, they do not necessarily lead to perceptually compelling results. In this paper, we show that adding a learned no-reference image quality metric to the loss can significantly improve enhancement operators. This metric is implemented using a CNN (convolutional neural network) trained on a large-scale dataset labelled with aesthetic preferences of human raters. This loss allows us to conveniently perform back-propagation in our learning framework to simultaneously optimize for similarity to a given ground truth reference and perceptual quality. This perceptual loss is only used to train parameters of image processing operators, and does not impose any extra complexity at inference time. Our experiments demonstrate that this loss can be effective for tuning a variety of operators such as local tone mapping and dehazing

    A2-RL: Aesthetics Aware Reinforcement Learning for Image Cropping

    Full text link
    Image cropping aims at improving the aesthetic quality of images by adjusting their composition. Most weakly supervised cropping methods (without bounding box supervision) rely on the sliding window mechanism. The sliding window mechanism requires fixed aspect ratios and limits the cropping region with arbitrary size. Moreover, the sliding window method usually produces tens of thousands of windows on the input image which is very time-consuming. Motivated by these challenges, we firstly formulate the aesthetic image cropping as a sequential decision-making process and propose a weakly supervised Aesthetics Aware Reinforcement Learning (A2-RL) framework to address this problem. Particularly, the proposed method develops an aesthetics aware reward function which especially benefits image cropping. Similar to human's decision making, we use a comprehensive state representation including both the current observation and the historical experience. We train the agent using the actor-critic architecture in an end-to-end manner. The agent is evaluated on several popular unseen cropping datasets. Experiment results show that our method achieves the state-of-the-art performance with much fewer candidate windows and much less time compared with previous weakly supervised methods.Comment: Accepted by CVPR 201

    Image Aesthetics Assessment Using Composite Features from off-the-Shelf Deep Models

    Full text link
    Deep convolutional neural networks have recently achieved great success on image aesthetics assessment task. In this paper, we propose an efficient method which takes the global, local and scene-aware information of images into consideration and exploits the composite features extracted from corresponding pretrained deep learning models to classify the derived features with support vector machine. Contrary to popular methods that require fine-tuning or training a new model from scratch, our training-free method directly takes the deep features generated by off-the-shelf models for image classification and scene recognition. Also, we analyzed the factors that could influence the performance from two aspects: the architecture of the deep neural network and the contribution of local and scene-aware information. It turns out that deep residual network could produce more aesthetics-aware image representation and composite features lead to the improvement of overall performance. Experiments on common large-scale aesthetics assessment benchmarks demonstrate that our method outperforms the state-of-the-art results in photo aesthetics assessment.Comment: Accepted by ICIP 201
    • …
    corecore