40,099 research outputs found

    Secure multi-party computation for analytics deployed as a lightweight web application

    Full text link
    We describe the definition, design, implementation, and deployment of a secure multi-party computation protocol and web application. The protocol and application allow groups of cooperating parties with minimal expertise and no specialized resources to compute basic statistical analytics on their collective data sets without revealing the contributions of individual participants. The application was developed specifically to support a Boston Women’s Workforce Council (BWWC) study of wage disparities within employer organizations in the Greater Boston Area. The application has been deployed successfully to support two data collection sessions (in 2015 and in 2016) to obtain data pertaining to compensation levels across genders and demographics. Our experience provides insights into the particular security and usability requirements (and tradeoffs) a successful “MPC-as-a-service” platform design and implementation must negotiate.We would like to acknowledge all the members of the Boston Women’s Workforce Council, and to thank in particular MaryRose Mazzola, Christina M. Knowles, and Katie A. Johnston, who led the efforts to organize participants and deploy the protocol as part of the 100% Talent: The Boston Women’s Compact [31], [32] data collections. We also thank the Boston University Initiative on Cities (IOC), and in particular Executive Director Katherine Lusk, who brought this potential application of secure multi-party computation to our attention. The BWWC, the IOC, and several sponsors contributed funding to complete this work. Support was also provided in part by Smart-city Cloud-based Open Platform and Ecosystem (SCOPE), an NSF Division of Industrial Innovation and Partnerships PFI:BIC project under award #1430145, and by Modular Approach to Cloud Security (MACS), an NSF CISE CNS SaTC Frontier project under award #1414119

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference
    • …
    corecore