5,968 research outputs found

    Weighted interlace polynomials

    Full text link
    The interlace polynomials introduced by Arratia, Bollobas and Sorkin extend to invariants of graphs with vertex weights, and these weighted interlace polynomials have several novel properties. One novel property is a version of the fundamental three-term formula q(G)=q(G-a)+q(G^{ab}-b)+((x-1)^{2}-1)q(G^{ab}-a-b) that lacks the last term. It follows that interlace polynomial computations can be represented by binary trees rather than mixed binary-ternary trees. Binary computation trees provide a description of q(G)q(G) that is analogous to the activities description of the Tutte polynomial. If GG is a tree or forest then these "algorithmic activities" are associated with a certain kind of independent set in GG. Three other novel properties are weighted pendant-twin reductions, which involve removing certain kinds of vertices from a graph and adjusting the weights of the remaining vertices in such a way that the interlace polynomials are unchanged. These reductions allow for smaller computation trees as they eliminate some branches. If a graph can be completely analyzed using pendant-twin reductions then its interlace polynomial can be calculated in polynomial time. An intuitively pleasing property is that graphs which can be constructed through graph substitutions have vertex-weighted interlace polynomials which can be obtained through algebraic substitutions.Comment: 11 pages (v1); 20 pages (v2); 27 pages (v3); 26 pages (v4). Further changes may be made before publication in Combinatorics, Probability and Computin

    Nonlocal, noncommutative diagrammatics and the linked cluster Theorems

    Get PDF
    Recent developments in quantum chemistry, perturbative quantum field theory, statistical physics or stochastic differential equations require the introduction of new families of Feynman-type diagrams. These new families arise in various ways. In some generalizations of the classical diagrams, the notion of Feynman propagator is extended to generalized propagators connecting more than two vertices of the graphs. In some others (introduced in the present article), the diagrams, associated to noncommuting product of operators inherit from the noncommutativity of the products extra graphical properties. The purpose of the present article is to introduce a general way of dealing with such diagrams. We prove in particular a "universal" linked cluster theorem and introduce, in the process, a Feynman-type "diagrammatics" that allows to handle simultaneously nonlocal (Coulomb-type) interactions, the generalized diagrams arising from the study of interacting systems (such as the ones where the ground state is not the vacuum but e.g. a vacuum perturbed by a magnetic or electric field, by impurities...) or Wightman fields (that is, expectation values of products of interacting fields). Our diagrammatics seems to be the first attempt to encode in a unified algebraic framework such a wide variety of situations. In the process, we promote two ideas. First, Feynman-type diagrammatics belong mathematically to the theory of linear forms on combinatorial Hopf algebras. Second, linked cluster-type theorems rely ultimately on M\"obius inversion on the partition lattice. The two theories should therefore be introduced and presented accordingl

    A class of solvable Lie algebras and their Casimir Invariants

    Full text link
    A nilpotent Lie algebra n_{n,1} with an (n-1) dimensional Abelian ideal is studied. All indecomposable solvable Lie algebras with n_{n,1} as their nilradical are obtained. Their dimension is at most n+2. The generalized Casimir invariants of n_{n,1} and of its solvable extensions are calculated. For n=4 these algebras figure in the Petrov classification of Einstein spaces. For larger values of n they can be used in a more general classification of Riemannian manifolds.Comment: 16 page

    B-urns

    Full text link
    The fringe of a B-tree with parameter mm is considered as a particular P\'olya urn with mm colors. More precisely, the asymptotic behaviour of this fringe, when the number of stored keys tends to infinity, is studied through the composition vector of the fringe nodes. We establish its typical behaviour together with the fluctuations around it. The well known phase transition in P\'olya urns has the following effect on B-trees: for m≤59m\leq 59, the fluctuations are asymptotically Gaussian, though for m≥60m\geq 60, the composition vector is oscillating; after scaling, the fluctuations of such an urn strongly converge to a random variable WW. This limit is C\mathbb C-valued and it does not seem to follow any classical law. Several properties of WW are shown: existence of exponential moments, characterization of its distribution as the solution of a smoothing equation, existence of a density relatively to the Lebesgue measure on C\mathbb C, support of WW. Moreover, a few representations of the composition vector for various values of mm illustrate the different kinds of convergence

    Congruence properties of depths in some random trees

    Full text link
    Consider a random recusive tree with n vertices. We show that the number of vertices with even depth is asymptotically normal as n tends to infinty. The same is true for the number of vertices of depth divisible by m for m=3, 4 or 5; in all four cases the variance grows linearly. On the other hand, for m at least 7, the number is not asymptotically normal, and the variance grows faster than linear in n. The case m=6 is intermediate: the number is asymptotically normal but the variance is of order n log n. This is a simple and striking example of a type of phase transition that has been observed by other authors in several cases. We prove, and perhaps explain, this non-intuitive behavious using a translation to a generalized Polya urn. Similar results hold for a random binary search tree; now the number of vertices of depth divisible by m is asymptotically normal for m at most 8 but not for m at least 9, and the variance grows linearly in the first case both faster in the second. (There is no intermediate case.) In contrast, we show that for conditioned Galton-Watson trees, including random labelled trees and random binary trees, there is no such phase transition: the number is asymptotically normal for every m.Comment: 23 page
    • …
    corecore