42,103 research outputs found

    On Koszulity for operads of Conformal Field Theory

    Full text link
    We study two closely related operads: the Gelfand-Dorfman operad GD and the Conformal Lie Operad CLie. The latter is the operad governing the Lie conformal algebra structure. We prove Koszulity of the Conformal Lie operad using the Groebner bases theory for operads and an operadic analogue of the Priddy criterion. An example of deformation of an operad coming from the Hom structures is considered. In particular we study possible deformations of the Associative operad from the point of view of the confluence property. Only one deformation, the operad which governs the identity (α(ab))c=a(α(bc))(\alpha(ab))c=a(\alpha (bc)) turns out to be confluent. We introduce a new Hom structure, namely Hom--Gelfand-Dorfman algebras and study their basic properties.Comment: 24 page

    Relaxed multi category structure of a global category of rings and modules

    Get PDF
    In this paper we describe how to give a particular global category of rings and modules the structure of a relaxed multi category, and we describe an algebra in this relaxed multi category such that vertex algebras appear as such algebras.Comment: 19 pages, xy-pic, epsfig. Updated version to appear in the Journal of Pure and Applied Algebra including various corrections and additional citation

    Operads of compatible structures and weighted partitions

    Full text link
    In this paper we describe operads encoding two different kinds of compatibility of algebraic structures. We show that there exist decompositions of these in terms of black and white products and we prove that they are Koszul for a large class of algebraic structures by using the poset method of B. Vallette. In particular we show that this is true for the operads of compatible Lie, associative and pre-Lie algebras.Comment: 16 pages, main result about Koszulness generalized to a large class of compatible structure

    On a theorem of Kontsevich

    Full text link
    In two seminal papers M. Kontsevich introduced graph homology as a tool to compute the homology of three infinite dimensional Lie algebras, associated to the three operads `commutative,' `associative' and `Lie.' We generalize his theorem to all cyclic operads, in the process giving a more careful treatment of the construction than in Kontsevich's original papers. We also give a more explicit treatment of the isomorphisms of graph homologies with the homology of moduli space and Out(F_r) outlined by Kontsevich. In [`Infinitesimal operations on chain complexes of graphs', Mathematische Annalen, 327 (2003) 545-573] we defined a Lie bracket and cobracket on the commutative graph complex, which was extended in [James Conant, `Fusion and fission in graph complexes', Pac. J. 209 (2003), 219-230] to the case of all cyclic operads. These operations form a Lie bi-algebra on a natural subcomplex. We show that in the associative and Lie cases the subcomplex on which the bi-algebra structure exists carries all of the homology, and we explain why the subcomplex in the commutative case does not.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-42.abs.htm

    A General Framework for Sound and Complete Floyd-Hoare Logics

    Full text link
    This paper presents an abstraction of Hoare logic to traced symmetric monoidal categories, a very general framework for the theory of systems. Our abstraction is based on a traced monoidal functor from an arbitrary traced monoidal category into the category of pre-orders and monotone relations. We give several examples of how our theory generalises usual Hoare logics (partial correctness of while programs, partial correctness of pointer programs), and provide some case studies on how it can be used to develop new Hoare logics (run-time analysis of while programs and stream circuits).Comment: 27 page

    Compositional uniformity, domain patterning and the mechanism underlying nano-chessboard arrays

    Full text link
    We propose that systems exhibiting compositional patterning at the nanoscale, so far assumed to be due to some kind of ordered phase segregation, can be understood instead in terms of coherent, single phase ordering of minority motifs, caused by some constrained drive for uniformity. The essential features of this type of arrangements can be reproduced using a superspace construction typical of uniformity-driven orderings, which only requires the knowledge of the modulation vectors observed in the diffraction patterns. The idea is discussed in terms of a simple two dimensional lattice-gas model that simulates a binary system in which the dilution of the minority component is favored. This simple model already exhibits a hierarchy of arrangements similar to the experimentally observed nano-chessboard and nano-diamond patterns, which are described as occupational modulated structures with two independent modulation wave vectors and simple step-like occupation modulation functions.Comment: Preprint. 11 pages, 11 figure
    corecore