2,508 research outputs found

    Tree transducers, L systems, and two-way machines

    Get PDF
    A relationship between parallel rewriting systems and two-way machines is investigated. Restrictions on the “copying power” of these devices endow them with rich structuring and give insight into the issues of determinism, parallelism, and copying. Among the parallel rewriting systems considered are the top-down tree transducer; the generalized syntax-directed translation scheme and the ETOL system, and among the two-way machines are the tree-walking automaton, the two-way finite-state transducer, and (generalizations of) the one-way checking stack automaton. The. relationship of these devices to macro grammars is also considered. An effort is made .to provide a systematic survey of a number of existing results

    Linear Bounded Composition of Tree-Walking Tree Transducers: Linear Size Increase and Complexity

    Get PDF
    Compositions of tree-walking tree transducers form a hierarchy with respect to the number of transducers in the composition. As main technical result it is proved that any such composition can be realized as a linear bounded composition, which means that the sizes of the intermediate results can be chosen to be at most linear in the size of the output tree. This has consequences for the expressiveness and complexity of the translations in the hierarchy. First, if the computed translation is a function of linear size increase, i.e., the size of the output tree is at most linear in the size of the input tree, then it can be realized by just one, deterministic, tree-walking tree transducer. For compositions of deterministic transducers it is decidable whether or not the translation is of linear size increase. Second, every composition of deterministic transducers can be computed in deterministic linear time on a RAM and in deterministic linear space on a Turing machine, measured in the sum of the sizes of the input and output tree. Similarly, every composition of nondeterministic transducers can be computed in simultaneous polynomial time and linear space on a nondeterministic Turing machine. Their output tree languages are deterministic context-sensitive, i.e., can be recognized in deterministic linear space on a Turing machine. The membership problem for compositions of nondeterministic translations is nondeterministic polynomial time and deterministic linear space. The membership problem for the composition of a nondeterministic and a deterministic tree-walking tree translation (for a nondeterministic IO macro tree translation) is log-space reducible to a context-free language, whereas the membership problem for the composition of a deterministic and a nondeterministic tree-walking tree translation (for a nondeterministic OI macro tree translation) is possibly NP-complete

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Bottom-up and top-down tree transformations - a comparison

    Get PDF
    The top-down and bottom-up tree transducer are incomparable with respect to their transformation power. The difference between them is mainly caused by the different order in which they use the facilities of copying and nondeterminism. One can however define certain simple tree transformations, independent of the top-down/bottom-up distinction, such that each tree transformation, top-down or bottom-up, can be decomposed into a number of these simple transformations. This decomposition result is used to give simple proofs of composition results concerning bottom-up tree transformations.\ud \ud A new tree transformation model is introduced which generalizes both the top-down and the bottom-up tree transducer
    • …
    corecore