221,230 research outputs found

    Interactive Oracle Proofs with Constant Rate and Query Complexity

    Get PDF
    We study interactive oracle proofs (IOPs) [BCS16,RRR16], which combine aspects of probabilistically checkable proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques that enable us to obtain tradeoffs in proof length versus query complexity that are not known to be achievable via PCPs or IPs alone. Our main results are: 1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant query complexity. 2. Reed-Solomon codes have 2-round IOPs of proximity with linear proof length and constant query complexity. 3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant query complexity. For all the above, known PCP constructions give quasilinear proof length and constant query complexity [BS08,Din07]. Also, for circuit satisfiability, [BKKMS13] obtain PCPs with linear proof length but sublinear (and super-constant) query complexity. As in [BKKMS13], we rely on algebraic-geometry codes to obtain our first result; but, unlike that work, our use of such codes is much "lighter" because we do not rely on any automorphisms of the code. We obtain our results by proving and combining "IOP-analogues" of tools underlying numerous IPs and PCPs: * Interactive proof composition. Proof composition [AS98] is used to reduce the query complexity of PCP verifiers, at the cost of increasing proof length by an additive factor that is exponential in the verifier\u27s randomness complexity. We prove a composition theorem for IOPs where this additive factor is linear. * Sublinear sumcheck. The sumcheck protocol [LFKN92] is an IP that enables the verifier to check the sum of values of a low-degree multi-variate polynomial on an exponentially-large hypercube, but the verifier\u27s running time depends linearly on the bound on individual degrees. We prove a sumcheck protocol for IOPs where this dependence is sublinear (e.g., polylogarithmic). Our work demonstrates that even constant-round IOPs are more efficient than known PCPs and IPs

    Bounds on the Error Probability of Raptor Codes under Maximum Likelihood Decoding

    Get PDF
    In this paper upper and lower bounds on the probability of decoding failure under maximum likelihood decoding are derived for different (nonbinary) Raptor code constructions. In particular four different constructions are considered; (i) the standard Raptor code construction, (ii) a multi-edge type construction, (iii) a construction where the Raptor code is nonbinary but the generator matrix of the LT code has only binary entries, (iv) a combination of (ii) and (iii). The latter construction resembles the one employed by RaptorQ codes, which at the time of writing this article represents the state of the art in fountain codes. The bounds are shown to be tight, and provide an important aid for the design of Raptor codes.Comment: Submitted for revie

    Resilience to time-correlated noise in quantum computation

    Full text link
    Fault-tolerant quantum computation techniques rely on weakly correlated noise. Here I show that it is enough to assume weak spatial correlations: time correlations can take any form. In particular, single-shot error correction techniques exhibit a noise threshold for quantum memories under spatially local stochastic noise.Comment: 16 pages, v3: as accepted in journa

    List-Decoding Gabidulin Codes via Interpolation and the Euclidean Algorithm

    Full text link
    We show how Gabidulin codes can be list decoded by using a parametrization approach. For this we consider a certain module in the ring of linearized polynomials and find a minimal basis for this module using the Euclidean algorithm with respect to composition of polynomials. For a given received word, our decoding algorithm computes a list of all codewords that are closest to the received word with respect to the rank metric.Comment: Submitted to ISITA 2014, IEICE copyright upon acceptanc

    On the Construction of Prefix-Free and Fix-Free Codes with Specified Codeword Compositions

    Get PDF
    We investigate the construction of prefix-free and fix-free codes with specified codeword compositions. We present a polynomial time algorithm which constructs a fix-free code with the same codeword compositions as a given code for a special class of codes called distinct codes. We consider the construction of optimal fix-free codes which minimizes the average codeword cost for general letter costs with uniform distribution of the codewords and present an approximation algorithm to find a near optimal fix-free code with a given constant cost

    Smooth and Strong PCPs

    Get PDF
    Probabilistically checkable proofs (PCPs) can be verified based only on a constant amount of random queries, such that any correct claim has a proof that is always accepted, and incorrect claims are rejected with high probability (regardless of the given alleged proof). We consider two possible features of PCPs: - A PCP is strong if it rejects an alleged proof of a correct claim with probability proportional to its distance from some correct proof of that claim. - A PCP is smooth if each location in a proof is queried with equal probability. We prove that all sets in NP have PCPs that are both smooth and strong, are of polynomial length, and can be verified based on a constant number of queries. This is achieved by following the proof of the PCP theorem of Arora, Lund, Motwani, Sudan and Szegedy (JACM, 1998), providing a stronger analysis of the Hadamard and Reed - Muller based PCPs and a refined PCP composition theorem. In fact, we show that any set in NP has a smooth strong canonical PCP of Proximity (PCPP), meaning that there is an efficiently computable bijection of NP witnesses to correct proofs. This improves on the recent construction of Dinur, Gur and Goldreich (ITCS, 2019) of PCPPs that are strong canonical but inherently non-smooth. Our result implies the hardness of approximating the satisfiability of "stable" 3CNF formulae with bounded variable occurrence, where stable means that the number of clauses violated by an assignment is proportional to its distance from a satisfying assignment (in the relative Hamming metric). This proves a hypothesis used in the work of Friggstad, Khodamoradi and Salavatipour (SODA, 2019), suggesting a connection between the hardness of these instances and other stable optimization problems
    • …
    corecore