823 research outputs found

    Colour image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution

    Full text link
    We propose a new method for the numerical solution of a PDE-driven model for colour image segmentation and give numerical examples of the results. The method combines the vector-valued Allen-Cahn phase field equation with initial data fitting terms. This method is known to be closely related to the Mumford-Shah problem and the level set segmentation by Chan and Vese. Our numerical solution is performed using a multigrid splitting of a finite element space, thereby producing an efficient and robust method for the segmentation of large images.Comment: 17 pages, 9 figure

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201

    Conduction in jammed systems of tetrahedra

    Full text link
    Control of transport processes in composite microstructures is critical to the development of high performance functional materials for a variety of energy storage applications. The fundamental process of conduction and its control through the manipulation of granular composite attributes (e.g., grain shape) are the subject of this work. We show that athermally jammed packings of tetrahedra with ultra-short range order exhibit fundamentally different pathways for conduction than those in dense sphere packings. Highly resistive granular constrictions and few face-face contacts between grains result in short-range distortions from the mean temperature field. As a consequence, 'granular' or differential effective medium theory predicts the conductivity of this media within 10% at the jamming point; in contrast, strong enhancement of transport near interparticle contacts in packed-sphere composites results in conductivity divergence at the jamming onset. The results are expected to be particularly relevant to the development of nanomaterials, where nanoparticle building blocks can exhibit a variety of faceted shapes.Comment: 9 pages, 10 figure

    A multigrid continuation method for elliptic problems with folds

    Get PDF
    We introduce a new multigrid continuation method for computing solutions of nonlinear elliptic eigenvalue problems which contain limit points (also called turning points or folds). Our method combines the frozen tau technique of Brandt with pseudo-arc length continuation and correction of the parameter on the coarsest grid. This produces considerable storage savings over direct continuation methods,as well as better initial coarse grid approximations, and avoids complicated algorithms for determining the parameter on finer grids. We provide numerical results for second, fourth and sixth order approximations to the two-parameter, two-dimensional stationary reaction-diffusion problem: Δu+λ exp(u/(1+au)) = 0. For the higher order interpolations we use bicubic and biquintic splines. The convergence rate is observed to be independent of the occurrence of limit points

    Cosmological Radiation Hydrodynamics with ENZO

    Full text link
    We describe an extension of the cosmological hydrodynamics code ENZO to include the self-consistent transport of ionizing radiation modeled in the flux-limited diffusion approximation. A novel feature of our algorithm is a coupled implicit solution of radiation transport, ionization kinetics, and gas photoheating, making the timestepping for this portion of the calculation resolution independent. The implicit system is coupled to the explicit cosmological hydrodynamics through operator splitting and solved with scalable multigrid methods. We summarize the numerical method, present a verification test on cosmological Stromgren spheres, and then apply it to the problem of cosmological hydrogen reionization.Comment: 14 pages, 3 figures, to appear in Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics, Ed. I. Hubeny, American Institute of Physics (2009

    Composite Finite Elements for Trabecular Bone Microstructures

    Get PDF
    In many medical and technical applications, numerical simulations need to be performed for objects with interfaces of geometrically complex shape. We focus on the biomechanical problem of elasticity simulations for trabecular bone microstructures. The goal of this dissertation is to develop and implement an efficient simulation tool for finite element simulations on such structures, so-called composite finite elements. We will deal with both the case of material/void interfaces (complicated domains) and the case of interfaces between different materials (discontinuous coefficients). In classical finite element simulations, geometric complexity is encoded in tetrahedral and typically unstructured meshes. Composite finite elements, in contrast, encode geometric complexity in specialized basis functions on a uniform mesh of hexahedral structure. Other than alternative approaches (such as e.g. fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes, and extended finite element methods), the composite finite elements are tailored to geometry descriptions by 3D voxel image data and use the corresponding voxel grid as computational mesh, without introducing additional degrees of freedom, and thus making use of efficient data structures for uniformly structured meshes. The composite finite element method for complicated domains goes back to Wolfgang Hackbusch and Stefan Sauter and restricts standard affine finite element basis functions on the uniformly structured tetrahedral grid (obtained by subdivision of each cube in six tetrahedra) to an approximation of the interior. This can be implemented as a composition of standard finite element basis functions on a local auxiliary and purely virtual grid by which we approximate the interface. In case of discontinuous coefficients, the same local auxiliary composition approach is used. Composition weights are obtained by solving local interpolation problems for which coupling conditions across the interface need to be determined. These depend both on the local interface geometry and on the (scalar or tensor-valued) material coefficients on both sides of the interface. We consider heat diffusion as a scalar model problem and linear elasticity as a vector-valued model problem to develop and implement the composite finite elements. Uniform cubic meshes contain a natural hierarchy of coarsened grids, which allows us to implement a multigrid solver for the case of complicated domains. Besides simulations of single loading cases, we also apply the composite finite element method to the problem of determining effective material properties, e.g. for multiscale simulations. For periodic microstructures, this is achieved by solving corrector problems on the fundamental cells using affine-periodic boundary conditions corresponding to uniaxial compression and shearing. For statistically periodic trabecular structures, representative fundamental cells can be identified but do not permit the periodic approach. Instead, macroscopic displacements are imposed using the same set as before of affine-periodic Dirichlet boundary conditions on all faces. The stress response of the material is subsequently computed only on an interior subdomain to prevent artificial stiffening near the boundary. We finally check for orthotropy of the macroscopic elasticity tensor and identify its axes.Zusammengesetzte finite Elemente für trabekuläre Mikrostrukturen in Knochen In vielen medizinischen und technischen Anwendungen werden numerische Simulationen für Objekte mit geometrisch komplizierter Form durchgeführt. Gegenstand dieser Dissertation ist die Simulation der Elastizität trabekulärer Mikrostrukturen von Knochen, einem biomechanischen Problem. Ziel ist es, ein effizientes Simulationswerkzeug für solche Strukturen zu entwickeln, die sogenannten zusammengesetzten finiten Elemente. Wir betrachten dabei sowohl den Fall von Interfaces zwischen Material und Hohlraum (komplizierte Gebiete) als auch zwischen verschiedenen Materialien (unstetige Koeffizienten). In klassischen Finite-Element-Simulationen wird geometrische Komplexität typischerweise in unstrukturierten Tetraeder-Gittern kodiert. Zusammengesetzte finite Elemente dagegen kodieren geometrische Komplexität in speziellen Basisfunktionen auf einem gleichförmigen Würfelgitter. Anders als alternative Ansätze (wie zum Beispiel fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes und extended finite element methods) sind die zusammengesetzten finiten Elemente zugeschnitten auf die Geometriebeschreibung durch dreidimensionale Bilddaten und benutzen das zugehörige Voxelgitter als Rechengitter, ohne zusätzliche Freiheitsgrade einzuführen. Somit können sie effiziente Datenstrukturen für gleichförmig strukturierte Gitter ausnutzen. Die Methode der zusammengesetzten finiten Elemente geht zurück auf Wolfgang Hackbusch und Stefan Sauter. Man schränkt dabei übliche affine Finite-Element-Basisfunktionen auf gleichförmig strukturierten Tetraedergittern (die man durch Unterteilung jedes Würfels in sechs Tetraeder erhält) auf das approximierte Innere ein. Dies kann implementiert werden durch das Zusammensetzen von Standard-Basisfunktionen auf einem lokalen und rein virtuellen Hilfsgitter, durch das das Interface approximiert wird. Im Falle unstetiger Koeffizienten wird die gleiche lokale Hilfskonstruktion verwendet. Gewichte für das Zusammensetzen erhält man hier, indem lokale Interpolationsprobleme gelöst werden, wozu zunächst Kopplungsbedingungen über das Interface hinweg bestimmt werden. Diese hängen ab sowohl von der lokalen Geometrie des Interface als auch von den (skalaren oder tensorwertigen) Material-Koeffizienten auf beiden Seiten des Interface. Wir betrachten Wärmeleitung als skalares und lineare Elastizität als vektorwertiges Modellproblem, um die zusammengesetzten finiten Elemente zu entwickeln und zu implementieren. Gleichförmige Würfelgitter enthalten eine natürliche Hierarchie vergröberter Gitter, was es uns erlaubt, im Falle komplizierter Gebiete einen Mehrgitterlöser zu implementieren. Neben Simulationen einzelner Lastfälle wenden wir die zusammengesetzten finiten Elemente auch auf das Problem an, effektive Materialeigenschaften zu bestimmen, etwa für mehrskalige Simulationen. Für periodische Mikrostrukturen wird dies erreicht, indem man Korrekturprobleme auf der Fundamentalzelle löst. Dafür nutzt man affin-periodische Randwerte, die zu uniaxialem Druck oder zu Scherung korrespondieren. In statistisch periodischen trabekulären Mikrostrukturen lassen sich ebenfalls Fundamentalzellen identifizieren, sie erlauben jedoch keinen periodischen Ansatz. Stattdessen werden makroskopische Verschiebungen zu denselben affin-periodischen Randbedingungen vorgegeben, allerdings durch Dirichlet-Randwerte auf allen Seitenflächen. Die Spannungsantwort des Materials wird anschließend nur auf einem inneren Teilbereich berechnet, um künstliche Versteifung am Rand zu verhindern. Schließlich prüfen wir den makroskopischen Elastizitätstensor auf Orthotropie und identifizieren deren Achsen

    A local grid refinement technique based upon Richardson extrapolation

    Get PDF
    A grid-embedding technique for the solution of two-dimensional incompressible flows governed by the Navier-Stokes equations is presented. A single coarse grid covers the whole domain, and local grid refinement B carried out in the regions of high gradients without changing the basic grid structure. A finite volume method with collocated primitive variables is employed, ensuring conservation at the interfaces of embedded grids, as well as global conservation. The method is applied to the simulation of a turbulent flow past a backward facing step, the flow over a square obstacle, and the flow in a sudden pipe expansion, and the predictions are compared with data published in the literature. They show that neither the convergence rate nor the stability of the method are affected by the presence of embedded grids. The grid-embedding technique yields significant savings in computing time to achieve the same accuracy obtained wing conventional grids. (C) 1997 by Elsevier Science Inc

    Three real-space discretization techniques in electronic structure calculations

    Full text link
    A characteristic feature of the state-of-the-art of real-space methods in electronic structure calculations is the diversity of the techniques used in the discretization of the relevant partial differential equations. In this context, the main approaches include finite-difference methods, various types of finite-elements and wavelets. This paper reports on the results of several code development projects that approach problems related to the electronic structure using these three different discretization methods. We review the ideas behind these methods, give examples of their applications, and discuss their similarities and differences.Comment: 39 pages, 10 figures, accepted to a special issue of "physica status solidi (b) - basic solid state physics" devoted to the CECAM workshop "State of the art developments and perspectives of real-space electronic structure techniques in condensed matter and molecular physics". v2: Minor stylistic and typographical changes, partly inspired by referee comment

    Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    Full text link
    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-boundary-value problem, a control-volume discretization is developed in spherical coordinates. The basic physics are illustrated by simulating many representative cases, including a simple model of the popular cathode material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain). Analytical approximations are also derived for the voltage plateau as a function of the applied current
    • …
    corecore