2,964 research outputs found

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty

    RISE-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance

    Get PDF
    This article investigates the integrated lane-keeping and roll control for autonomous ground vehicles (AGVs) considering the transient performance and system disturbances. The robust integral of the sign of error (RISE) control strategy is proposed to achieve the lane-keeping control purpose with rollover prevention, by guaranteeing the asymptotic stability of the closed-loop system, attenuating systematic disturbances, and maintaining the controlled states within the prescribed performance boundaries. Three contributions have been made in this article: 1) a new prescribed performance function (PPF) that does not require accurate initial errors is proposed to guarantee the tracking errors restricted within the predefined asymptotic boundaries; 2) a modified neural network (NN) estimator which requires fewer adaptively updated parameters is proposed to approximate the unknown vertical dynamics; and 3) the improved RISE control based on PPF is proposed to achieve the integrated control objective, which analytically guarantees both the controller continuity and closed-loop system asymptotic stability by integrating the signum error function. The overall system stability is proved with the Lyapunov function. The controller effectiveness and robustness are finally verified by comparative simulations using two representative driving maneuvers, based on the high-fidelity CarSim-Simulink simulation

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Robust Neural Network RISE Observer Based Fault Diagnostics And Prediction

    Get PDF
    A novel fault diagnostics and prediction scheme in continuous time is introduced for a class of nonlinear systems. The proposed method uses a novel neural network (NN) based robust integral sign of the error (RISE) observer, or estimator, allowing for semi-global asymptotic stability in the presence of NN approximation errors, disturbances and unmodeled dynamics. This is in comparison to typical results presented in the literature that show only boundedness in the presence of uncertainties. The output of the observer/estimator is compared with that of the nonlinear system and a residual is used for declaring the presence of a fault when the residual exceeds a user defined threshold. The NN weights are tuned online with no offline tuning phase. The output of the RISE observer is utilized for diagnostics. Additionally, a method for time-to-failure (TTF) prediction, a first step in prognostics, is developed by projecting the developed parameter-update law under the assumption that the nonlinear system satisfies a linear-in-the-parameters (LIP) assumption. The TTF method uses known critical values of a system to predict when an estimated parameter will reach a known failure threshold. The performance of the NN/RISE observer system is evaluated on a nonlinear system and a simply supported beam finite element analysis (FEA) simulation based on laboratory experiments. Results show that the proposed method provides as much as 25% increased accuracy while the TTF scheme renders a more accurate prediction. © 2010 IEEE

    Energy efficient wireless sensor network protocols for monitoring and prognostics of large scale systems

    Get PDF
    In this work, energy-efficient protocols for wireless sensor networks (WSN) with applications to prognostics are investigated. Both analytical methods and verification are shown for the proposed methods via either hardware experiments or simulation. This work is presented in five papers. Energy-efficiency methods for WSN include distributed algorithms for i) optimal routing, ii) adaptive scheduling, iii) adaptive transmission power and data-rate control --Abstract, page iv

    Data-based methods for modeling, control and monitoring of chemical processes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
    corecore