42 research outputs found

    Best practice for personnel, material and rock transportation in ultra deep level gold mines.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 2003.Ultra deep mining presents many challenges to the mining engineer, one of which is the logistics to support mining operations quickly and efficiently. Typically, Witwatersrand gold mines operate at depths in excess of 2000 m with stoping taking place to 3500 m and investigations underway to mine to a depth of 5000 m. As mining progresses deeper and further from the shaft, the role of logistics becomes increasingly important if production targets are to be achieved. Access to the workings is often via sub vertical and even tertiary subvertical shaft systems with working faces as far as five kilometers from the shaft. It is inevitable therefore, that distance will negatively impact the working time available at the stope face, material transportation and distribution, as well as the removal of broken ore. Possible solutions to these logistical problems may be found in the use of different transportation systems or by applying sound design and operational principles to transportation systems, both in the horizontal and instope areas. This thesis investigates the challenges of logistics for ultra deep level gold mining in the Witwaterstrand basin for mining layouts planning to mine between 3000 m and 5000 m underground with typical horizontal distances of over 3000 m. The transportation needs analysis recognised that vertical transportation is a wellmanaged and organised system and is mainly the same for both shallow and deep level operations. As a result of this, the thesis only focuses on the logistical issues of the horizontal and in-stope processes. The literature review indicates that the majority of work previously conducted on transportation focused around the area of horizontal transportation with limited inputs to in-stope transportation systems. The review concludes that the traditional locomotive transportation system is the most applicable mode of horizontal transportation. Thus, special emphasis is given to trackbound transportation. An integrated approach is taken towards mine transportation advocating that underground logistics be considered as equally important as any other discipline, Le. rock engineering, ventilation, etc. In addition, the transportation process should consider each area equally important. All to often, the transportation of rock is considered of paramount importance over the transportation of personnel and material. Thus, the planning any transportation system should incorporate personnel, material and rock. To enable this, scheduling, communication and control are important with special attention required for transfer points in the transportation system. As each site has its own particular requirement, thus the final transportation systems must be drawn up based on the specific requirements of each mine. A guideline is proposed for the design of ultra deep level underground transport systems for personnel, material and rock transportation. Thus, providing mining engineers with sufficient information and data to select an appropriate transportation system to meet specific mine requirements. The thesis highlights areas requiring consideration by mine engineers when designing a transportation system from shaft to the working face

    Mining Technologies Innovative Development

    Get PDF
    The present book covers the main challenges, important for future prospects of subsoils extraction as a public effective and profitable business, as well as technologically advanced industry. In the near future, the mining industry must overcome the problems of structural changes in raw materials demand and raise the productivity up to the level of high-tech industries to maintain the profits. This means the formation of a comprehensive and integral response to such challenges as the need for innovative modernization of mining equipment and an increase in its reliability, the widespread introduction of Industry 4.0 technologies in the activities of mining enterprises, the transition to "green mining" and the improvement of labor safety and avoidance of man-made accidents. The answer to these challenges is impossible without involving a wide range of scientific community in the publication of research results and exchange of views and ideas. To solve the problem, this book combines the works of researchers from the world's leading centers of mining science on the development of mining machines and mechanical systems, surface and underground geotechnology, mineral processing, digital systems in mining, mine ventilation and labor protection, and geo-ecology. A special place among them is given to post-mining technologies research

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    Get PDF
    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft

    Development of bonded composite doublers for the repair of oil recovery equipment.

    Full text link

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 2

    Get PDF
    These 92 papers comprise a peer-reviewed selection of presentations by authors from NASA, the Lunar and Planetary Institute (LPI), industry, and academia at the Second Conference on Lunar Bases and Space Activities of the 21st Century. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics included the following: (1) design and operation of transportation systems to, in orbit around, and on the Moon; (2) lunar base site selection; (3) design, architecture, construction, and operation of lunar bases and human habitats; (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology; (5) recovery and use of lunar resources; (6) environmental and human factors of and life support technology for human presence on the Moon; and (7) program management of human exploration of the Moon and space

    Dynamical systems : mechatronics and life sciences

    Get PDF
    Proceedings of the 13th Conference 鈥濪ynamical Systems - Theory and Applications" summarize 164 and the Springer Proceedings summarize 60 best papers of university teachers and students, researchers and engineers from whole the world. The papers were chosen by the International Scientific Committee from 315 papers submitted to the conference. The reader thus obtains an overview of the recent developments of dynamical systems and can study the most progressive tendencies in this field of science

    Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation

    Get PDF
    Recent advances in technology and refinement of available computational resources paved the way for the extensive use of computers to model and simulate complex real-world problems difficult to solve analytically. The appeal of simulations lies in the ability to predict the significance of a change to the system under study. The simulated results can be of great benefit in predicting various behaviors, such as the wind pattern in a particular region, the ability of a material to withstand a dynamic load, or even the behavior of a workpiece under a particular type of machining. This paper deals with the mathematical modeling and simulation techniques used in abrasive-based machining processes such as abrasive flow machining (AFM), magnetic-based finishing processes, i.e., magnetic abrasive finishing (MAF) process, magnetorheological finishing (MRF) process, and ball-end type magnetorheological finishing process (BEMRF). The paper also aims to highlight the advances and obstacles associated with these techniques and their applications in flow machining. This study contributes the better understanding by examining the available modeling and simulation techniques such as Molecular Dynamic Simulation (MDS), Computational Fluid Dynamics (CFD), Finite Element Method (FEM), Discrete Element Method (DEM), Multivariable Regression Analysis (MVRA), Artificial Neural Network (ANN), Response Surface Analysis (RSA), Stochastic Modeling and Simulation by Data Dependent System (DDS). Among these methods, CFD and FEM can be performed with the available commercial software, while DEM and MDS performed using the computer programming-based platform, i.e., "LAMMPS Molecular Dynamics Simulator," or C, C++, or Python programming, and these methods seem more promising techniques for modeling and simulation of loose abrasive-based machining processes. The other four methods (MVRA, ANN, RSA, and DDS) are experimental and based on statistical approaches that can be used for mathematical modeling of loose abrasive-based machining processes. Additionally, it suggests areas for further investigation and offers a priceless bibliography of earlier studies on the modeling and simulation techniques for abrasive-based machining processes. Researchers studying mathematical modeling of various micro- and nanofinishing techniques for different applications may find this review article to be of great help
    corecore