107 research outputs found

    Cooperative Driving in Mixed Traffic: An Infrastructure-Assisted Approach

    Get PDF
    Automated driving in urban traffic requires extensive information from the surroundings. The most promisring approach to facilitate automated driving in mixed traffic is platooning of connected and automated vehicles (CAV). In this research, we investigate a human-leading strategy (HL) by which CAVs drive in platoons with the CAV leading the platoon driven by a human. We thoroughly formulate the problem of managing CAV platoons by the HL strategy, systematically model the platoon dynamics and the traffic system, as well as propose two approaches to implement this strategy. By conducting experiments in a simulation framework that combines the traffic and the communication network, the implementation of the HL strategy is evaluated with the consideration of travel time, automated driving experience, and communication reliability. The simulation results revealed that the HL strategy makes it feasible for CAVs to drive in automated mode in an urban mixed traffic network, while its performance relies on the CAV penetration rate and communication reliability. In addition, the results suggest that the performance of the HL strategy can be significantly improved by approaches that allow uninterrupted platooning and result in stable platoon dynamics

    Time-Dependent Performance Modeling for Platooning Communications at Intersection

    Full text link
    With the development of internet of vehicles, platooning strategy has been widely studied as the potential approach to ensure the safety of autonomous driving. Vehicles in the form of platoon adopt 802.11p to exchange messages through vehicle to vehicle (V2V) communications. When multiple platoons arrive at an intersection, the leader vehicle of each platoon adjusts its movement characteristics to ensure that it can cross the intersection and thus the following vehicles have to adjust their movement characteristics accordingly. In this case, the time-varying connectivity among vehicles leads to the significant non-stationary performance change in platooning communications, which may incur safety issues. In this paper, we construct the time-dependent model to evaluate the platooning communication performance at the intersection based on the initial movement characteristics. We first consider the movement behaviors of vehicles at the intersection including turning, accelerating, decelerating and stopping as well as the periodic change of traffic lights to construct movement model, and then establish a hearing network to reflect the time-varying connectivity among vehicles. Afterwards, we adopt the pointwise stationary fluid flow approximation (PSFFA) to model the non-stationary behavior of transmission queue. Then, we consider four access categories (ACs) and continuous backoff freezing of 802.11p to construct the models to describe the time-dependent access process of 802.11p. Finally, based on the time-dependent model, the packet transmission delay and packet delivery ratio are derived. The accuracy of our proposed model is verified by comparing the simulation results with analytical results.Comment: This paper has been accepted by IEEE Internet of Things Journa

    Forecast based traffic signal coordination using congestion modelling and real-time data

    Get PDF
    This dissertation focusses on the implementation of a Real-Time Simulation-Based Signal Coordination module for arterial traffic, as proof of concept for the potential of integrating a new generation of advanced heuristic optimisation tools into Real-Time Traffic Management Systems. The endeavour represents an attempt to address a number of shortcomings observed in most currently marketed on-line signal setting solutions and provide better adaptive signal timings. It is unprecedented in its use of a Genetic Algorithm coupled with Continuous Dynamic Traffic Assignment as solution evaluation method, only made possible by the recently presented parallelisation strategies for the underlying algorithms. Within a fully functional traffic modelling and management framework, the optimiser is developed independently, leaving ample space for future adaptations and extensions, while relying on the best available technology to provide it fast and realistic solution evaluation based on reliable real-time supply and demand data. The optimiser can in fact operate on high quality network models that are well calibrated and always up-to-date with real-world road conditions; rely on robust, multi-source network wide traffic data, rather than being attached to single detectors; manage area coordination using an external simulation engine, rather than a na¨ıve flow propagation model that overlooks crucial traffic dynamics; and even incorporate real-time traffic forecast to account for transient phenomena in the near future to act as a feedback controller. Results clearly confirm the efficacy of the proposed method, by which it is possible to obtain relevant and consistent corridor performance improvements with respect to widely known arterial bandwidth maximisation techniques under a range of different traffic conditions. The computational efforts involved are already manageable for realistic real-world applications, and future extensions of the presented approach to more complex problems seem within reach thanks to the load distribution strategies already envisioned and prepared for in the context of this work

    Urban Street Networks and Sustainable Transportation

    Get PDF
    Urban street space is challenged with a variety of emerging usages and users, such as various vehicles with different speeds, passenger pick-up and drop-off by mobility services, increasing parking demand for a variety of private and shared vehicles, new powertrains (e.g., charging units), and new vehicles and services fueled by digitalization and vehicle automation. These new usages compete with established functions of streets such as providing space for mobility, social interactions, and cultural and recreational activities. The combination of these functions makes streets focal points of communities that do not only fulfill a functional role but also provide identity to cities. Streets are prominent parts of cities and are essential to sustainable transport plans. The main aim of the Street Networks and Sustainable Transportation collection is to focus on urban street networks and their effects on sustainable transportation. Accordingly, various street elements related to mobility, public transport, parking, design, and movement of people and goods at the street level can be included

    AN INTEGRATED TRAFFIC CONTROL SYSTEM FOR FREEWAY CORRIDORS UNDER NON-RECURRENT CONGESTION

    Get PDF
    This research has focused on developing an advanced dynamic corridor traffic control system that can assist responsible traffic professionals in generating effective control strategies for contending with non-recurrent congestion that often concurrently plagues both the freeway and arterial systems. The developed system features its hierarchical operating structure that consists of an integrated-level control and a local-level module for bottleneck management. The primary function of the integrated-level control is to maximize the capacity utilization of the entire corridor under incident conditions with concurrently implemented strategies over dynamically computed windows, including diversion control at critical off-ramps, on-ramp metering, and optimal arterial signal timings. The system development process starts with design of a set of innovative network formulations that can accurately and efficiently capture the operational characteristics of traffic flows in the entire corridor optimization process. Grounded on the proposed formulations for network flows, the second part of the system development process is to construct two integrated control models, where the base model is designed for a single-segment detour operation and the extended model is designated for general network applications. To efficiently explore the control effectiveness under different policy priorities between the target freeway and available detour routes, this study has further proposed a multi-objective control process for best managing the complex traffic conditions during incident operations. Due to the nonlinear nature of the proposed formulations and the concerns of computing efficiency, this study has also developed a GA-based heuristic along with a successive optimization process that can yield sufficiently reliable solutions for operating the proposed system in a real-time traffic environment. To evaluate the effectiveness and efficiency of the developed system, this study has conducted extensive numerical experiments with real-world cases. The experimental results have demonstrated that with the information generated from the proposed models, the responsible agency can effectively implement control strategies in a timely manner at all control points to substantially improve the efficiency of the corridor control operations. In view of potential spillback blockage due to detour operations, this study has further developed a local-level bottleneck management module with enhanced arterial flow formulations that can fully capture the complex interrelations between the overflow in each lane group and its impact on the neighboring lanes. As a supplemental component for corridor control, this module has been integrated with the optimization model to fine-tune the arterial signal timings and to prevent the queue spillback or blockages at off-ramps and intersections. The results of extensive numerical experiments have shown that the supplemental module is quite effective in producing local control strategies that can prevent the formation of intersection bottlenecks in the local arterial

    Proceedings of the 8th MIT/ONR Workshop on C[3] Systems, held at Massachusetts Institute of Technology, Cambridge, Massachusetts, June 24 to 28, 1985

    Get PDF
    "December 1985."Includes bibliographies and index.Office of Naval Research Contract no. ONR/N00014-77-C-0532 NR-041-519edited by Michael Athans and Alexander H. Levis
    • …
    corecore