316 research outputs found

    Recent Advances in Deep Learning Techniques for Face Recognition

    Full text link
    In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.Comment: 32 pages and citation: M. T. H. Fuad et al., "Recent Advances in Deep Learning Techniques for Face Recognition," in IEEE Access, vol. 9, pp. 99112-99142, 2021, doi: 10.1109/ACCESS.2021.309613

    Mitigating the effect of covariates in face recognition

    Get PDF
    Current face recognition systems capture faces of cooperative individuals in controlled environment as part of the face recognition process. It is therefore possible to control lighting, pose, background, and quality of images. However, in a real world application, we have to deal with both ideal and imperfect data. Performance of current face recognition systems is affected for such non-ideal and challenging cases. This research focuses on designing algorithms to mitigate the effect of covariates in face recognition.;To address the challenge of facial aging, an age transformation algorithm is proposed that registers two face images and minimizes the aging variations. Unlike the conventional method, the gallery face image is transformed with respect to the probe face image and facial features are extracted from the registered gallery and probe face images. The variations due to disguises cause change in visual perception, alter actual data, make pertinent facial information disappear, mask features to varying degrees, or introduce extraneous artifacts in the face image. To recognize face images with variations due to age progression and disguises, a granular face verification approach is designed which uses dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at different granularity levels. The granular levels provide non-disjoint spatial information which is combined using the proposed likelihood ratio based Support Vector Machine match score fusion algorithm. The face verification algorithm is validated using five face databases including the Notre Dame face database, FG-Net face database and three disguise face databases.;The information in visible spectrum images is compromised due to improper illumination whereas infrared images provide invariance to illumination and expression. A multispectral face image fusion algorithm is proposed to address the variations in illumination. The Support Vector Machine based image fusion algorithm learns the properties of the multispectral face images at different resolution and granularity levels to determine optimal information and combines them to generate a fused image. Experiments on the Equinox and Notre Dame multispectral face databases show that the proposed algorithm outperforms existing algorithms. We next propose a face mosaicing algorithm to address the challenge due to pose variations. The mosaicing algorithm generates a composite face image during enrollment using the evidence provided by frontal and semiprofile face images of an individual. Face mosaicing obviates the need to store multiple face templates representing multiple poses of a users face image. Experiments conducted on three different databases indicate that face mosaicing offers significant benefits by accounting for the pose variations that are commonly observed in face images.;Finally, the concept of online learning is introduced to address the problem of classifier re-training and update. A learning scheme for Support Vector Machine is designed to train the classifier in online mode. This enables the classifier to update the decision hyperplane in order to account for the newly enrolled subjects. On a heterogeneous near infrared face database, the case study using Principal Component Analysis and C2 feature algorithms shows that the proposed online classifier significantly improves the verification performance both in terms of accuracy and computational time

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin

    Feature extraction and information fusion in face and palmprint multimodal biometrics

    Get PDF
    ThesisMultimodal biometric systems that integrate the biometric traits from several modalities are able to overcome the limitations of single modal biometrics. Fusing the information at an earlier level by consolidating the features given by different traits can give a better result due to the richness of information at this stage. In this thesis, three novel methods are derived and implemented on face and palmprint modalities, taking advantage of the multimodal biometric fusion at feature level. The benefits of the proposed method are the enhanced capabilities in discriminating information in the fused features and capturing all of the information required to improve the classification performance. Multimodal biometric proposed here consists of several stages such as feature extraction, fusion, recognition and classification. Feature extraction gathers all important information from the raw images. A new local feature extraction method has been designed to extract information from the face and palmprint images in the form of sub block windows. Multiresolution analysis using Gabor transform and DCT is computed for each sub block window to produce compact local features for the face and palmprint images. Multiresolution Gabor analysis captures important information in the texture of the images while DCT represents the information in different frequency components. Important features with high discrimination power are then preserved by selecting several low frequency coefficients in order to estimate the model parameters. The local features extracted are fused in a new matrix interleaved method. The new fused feature vector is higher in dimensionality compared to the original feature vectors from both modalities, thus it carries high discriminating power and contains rich statistical information. The fused feature vector also has larger data points in the feature space which is advantageous for the training process using statistical methods. The underlying statistical information in the fused feature vectors is captured using GMM where several numbers of modal parameters are estimated from the distribution of fused feature vector. Maximum likelihood score is used to measure a degree of certainty to perform recognition while maximum likelihood score normalization is used for classification process. The use of likelihood score normalization is found to be able to suppress an imposter likelihood score when the background model parameters are estimated from a pool of users which include statistical information of an imposter. The present method achieved the highest recognition accuracy 97% and 99.7% when tested using FERET-PolyU dataset and ORL-PolyU dataset respectively.Universiti Malaysia Perlis and Ministry of Higher Education Malaysi

    Face recognition using skin texture

    Get PDF
    In today's society where information technology is depended upon throughout homes, educational establishments and workplaces the challenge of identity management is ever growing. Advancements in image processing and biometric feature based identification have provided a means for computer software to accurately identify individuals from increasingly vast databases of users. In the quest to improve the performance of such systems in varying environmental conditions skin texture is here proposed as a biometric feature. This thesis presents and discusses a hypothesis for the use of facial skin texture regions taken from 2-dimensional photographs to accurately identify individuals using three classifiers (neural network, support vector machine and linear discriminant). Gabor wavelet filters are primarily used for feature extraction and arc supported in later chapters by the grey-level cooccurrence probability matrix (GLCP) to strengthen the system by providing supplementary high-frequency features. Various fusion techniques for combining these features are presented and their perfonnance is compared including both score and feature fusion and various permutations of each. Based on preliminary results from the BioSecure Multimodal Database (BMDB) , the work presented indicates that isolated texture regions of the human face taken from under the eye may provide sufficient information to discriminately identify an individual with an equal error rate (EER) of under 1% when operating in greyscale. An analysis of the performance of the algorithm against image resolution investigates the systems performance when faced with lower resolution training images and discusses optimal resolutions for classifier training. The system also shows a good degree of robustness when the probe image resolution is reduced indicating that the algorithm provides some level of scale invariance. Scope for future work is laid out and a review of the evaluation is also presented

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Remote sensing of opium poppy cultivation in Afghanistan

    Get PDF
    This work investigates differences in the survey methodologies of the monitoring programmes of the United Nations Office on Drugs and Crime (UNODC) and the US Government that lead to discrepancies in quantitative information about poppy cultivation. The aim of the research is to improve annual estimates of opium production. Scientific trials conducted for the UK Government (2006–2009) revealed differences between the two surveys that could account for the inconsistency in results. These related to the image interpretation of poppy from very high resolution satellite imagery, the mapping of the total area of agriculture and stratification using full coverage medium resolution imagery. MODIS time-series profiles of Normalised Difference Vegetation Index (NDVI), used to monitor Afghanistan’s agricultural system, revealed significant variation in the agriculture area between years caused by land management practices and expansion into new areas. Image interpretation of crops was investigated as a source of bias within the sample using increasing levels of generalisation in sample interpretations. Automatic segmentation and object-based classification were tested as methods to improve consistency. Generalisation was found to bias final estimates of poppy up to 14%. Segments were consistent with manual field delineations but object-based classification caused a systematic labelling error. The findings show differences in survey estimates based on interpretation keys and the resolution of imagery, which is compounded in areas of marginal agriculture or years with poor crop establishment. Stratified and unstratified poppy cultivation estimates were made using buffered and unbuffered agricultural masks at resolutions of 20, 30 and 60 m, resampled from SPOT-5 10 m data. The number of strata (1, 4, 8, 13, 23, 40) and sample fraction (0.2 to 2%) used in the estimate were also investigated. Decreasing the resolution of the imagery and buffering increased unstratified estimates. Stratified estimates were more robust to changes in sample size and distribution. The mapping of the agricultural area explained differences in cultivation figures of the opium monitoring programmes in Afghanistan. Supporting methods for yield estimation for opium poppy were investigated at field sites in the UK in 2004, 2005 and 2010. Good empirical relationships were found between NDVI and the yield indicators of mature capsule volume and dry capsule yield. The results suggested a generalised relationship across all sampled fields and years (R2 >0.70) during the 3–4 week period including poppy flowering. The application of this approach in Afghanistan was investigated using VHR satellite imagery and yield data from the UNODC’s annual survey. Initial results indicated the potential of improved yield estimates using a smaller and targeted collection of ground observations as an alternative to random sampling. The recommendations for poppy cultivation surveys are: the use of image-based stratification for improved precision and reducing differences in the agricultural mask, and use of automatic segmentation for improved consistency in field delineation of poppy crops. The findings have wider implications for improved confidence in statistical estimates from remote sensing methodologies
    • …
    corecore