15,778 research outputs found

    Moving Object Trajectories Meta-Model And Spatio-Temporal Queries

    Full text link
    In this paper, a general moving object trajectories framework is put forward to allow independent applications processing trajectories data benefit from a high level of interoperability, information sharing as well as an efficient answer for a wide range of complex trajectory queries. Our proposed meta-model is based on ontology and event approach, incorporates existing presentations of trajectory and integrates new patterns like space-time path to describe activities in geographical space-time. We introduce recursive Region of Interest concepts and deal mobile objects trajectories with diverse spatio-temporal sampling protocols and different sensors available that traditional data model alone are incapable for this purpose.Comment: International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 201

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Co-detection of acoustic emissions during failure of heterogeneous media: new perspectives for natural hazard early warning

    Full text link
    A promising method for real time early warning of gravity driven rupture that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. The method capitalizes on co-detection of elastic waves emanating from micro-cracks by multiple and spatially separated sensors. Event co-detection is considered as surrogate for large event size with more frequent co-detected events marking imminence of catastrophic failure. Using a spatially explicit fiber bundle numerical model with spatially correlated mechanical strength and two load redistribution rules, we constructed a range of mechanical failure scenarios and associated failure events (mapped into AE) in space and time. Analysis considering hypothetical arrays of sensors and consideration of signal attenuation demonstrate the potential of the co-detection principles even for insensitive sensors to provide early warning for imminent global failure

    Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks

    Get PDF
    Energy and bandwidth are limited resources in wireless sensor networks, and communication consumes significant amount of energy. When wireless vision sensors are used to capture and transfer image and video data, the problems of limited energy and bandwidth become even more pronounced. Thus, message traffic should be decreased to reduce the communication cost. In many applications, the interest is to detect composite and semantically higher-level events based on information from multiple sensors. Rather than sending all the information to the sinks and performing composite event detection at the sinks or control-center, it is much more efficient to push the detection of semantically high-level events within the network, and perform composite event detection in a peer-to-peer and energy-efficient manner across embedded smart cameras. In this paper, three different operation scenarios are analyzed for a wireless vision sensor network. A detailed quantitative comparison of these operation scenarios are presented in terms of energy consumption and latency. This quantitative analysis provides the motivation for, and emphasizes (1) the importance of performing high-level local processing and decision making at the embedded sensor level and (2) need for peer-to-peer communication solutions for wireless multimedia sensor networks
    • …
    corecore