384 research outputs found

    Composing Multiple Variability Artifacts to Assemble Coherent Workflows

    Get PDF
    International audienceThe development of scientific workflows is evolving towards the system- atic use of service oriented architectures, enabling the composition of dedicated and highly parameterized software services into processing pipelines. Building consistent workflows then becomes a cumbersome and error-prone activity as users cannot man- age such large scale variability. This paper presents a rigorous and tooled approach in which techniques from Software Product Line (SPL) engineering are reused and ex- tended to manage variability in service and workflow descriptions. Composition can be facilitated while ensuring consistency. Services are organized in a rich catalog which is organized as a SPL and structured according to the common and variable concerns captured for all services. By relying on sound merging techniques on the feature mod- els that make up the catalog, reasoning about the compatibility between connected services is made possible. Moreover, an entire workflow is then seen as a multiple SPL (i.e., a composition of several SPLs). When services are configured within, the prop- agation of variability choices is then automated with appropriate techniques and the user is assisted in obtaining a consistent workflow. The approach proposed is com- pletely supported by a combination of dedicated tools and languages. Illustrations and experimental validations are provided using medical imaging pipelines, which are rep- resentative of current scientific workflows in many domains

    Next-Generation Model-based Variability Management: Languages and Tools

    Get PDF
    International audienceVariability modelling and management is a key activity in a growing number of software engineering contexts, from software product lines to dynamic adaptive systems. Feature models are the defacto standard to formally represent and reason about commonality and variability of a software system. This tutorial aims at presenting next generation of feature modelling languages and tools, directly applicable to a wide range of model-based variability problems and application domains. Participants (being practitioners or academics, beginners or advanced) will learn the principles and foundations of languages and tool-supported techniques dedicated to the model-based management of variability

    Domain Specific Languages for Managing Feature Models: Advances and Challenges

    Get PDF
    International audienceManaging multiple and complex feature models is a tedious and error-prone activity in software product line engineering. Despite many advances in formal methods and analysis techniques, the supporting tools and APIs are not easily usable together, nor unified. In this paper, we report on the development and evolution of the Familiar Domain-Specific Language (DSL). Its toolset is dedicated to the large scale management of feature models through a good support for separating concerns, composing feature models and scripting manipulations. We overview various applications of Familiar and discuss both advantages and identified drawbacks. We then devise salient challenges to improve such DSL support in the near future

    Feature Model Differences

    Get PDF
    International audienceFeature models are a widespread means to represent commonality and variability in software product lines. As is the case for other kinds of models, computing and managing feature model differences is useful in various real-world situations. In this paper, we propose a set of novel differencing techniques that combine syntactic and semantic mechanisms, and automatically produce meaningful differences. Practitioners can exploit our results in various ways: to understand, manipulate, visualize and reason about differences. They can also combine them with existing feature model composition and decomposition operators. The proposed automations rely on satisfiability algorithms. They come with a dedicated language and a comprehensive environment. We illustrate and evaluate the practical usage of our techniques through a case study dealing with a configurable component framework

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    Interopérabilité des systèmes d'information : approches dirigées par les modèles

    Get PDF
    National audienceInformation systems are more and more often based on aggregation of other systems that must be maintained and evolved in an agile way and with no entropy creation. This is not without interoperability problems! Among others, the aim of Model-Driven Engineering (MDE) is to provide solutions for interoperability issues between systems. This paper summarizes thoughts that have come up from the specific action "Interoper- ability of information systems and model-driven engineering: What challenges? What solutions?" supported by inforsid. We propose a summary of approaches that are based on MDE and knowledge engineering and that tackle interoperability issues in the industry. Open questions and limitations that raised during the meetings are also reported

    A Process Model for the Integrated Reasoning about Quantitative IT Infrastructure Attributes

    Get PDF
    IT infrastructures can be quantitatively described by attributes, like performance or energy efficiency. Ever-changing user demands and economic attempts require varying short-term and long-term decisions regarding the alignment of an IT infrastructure and particularly its attributes to this dynamic surrounding. Potentially conflicting attribute goals and the central role of IT infrastructures presuppose decision making based upon reasoning, the process of forming inferences from facts or premises. The focus on specific IT infrastructure parts or a fixed (small) attribute set disqualify existing reasoning approaches for this intent, as they neither cover the (complex) interplay of all IT infrastructure components simultaneously, nor do they address inter- and intra-attribute correlations sufficiently. This thesis presents a process model for the integrated reasoning about quantitative IT infrastructure attributes. The process model’s main idea is to formalize the compilation of an individual reasoning function, a mathematical mapping of parametric influencing factors and modifications on an attribute vector. Compilation bases upon model integration to benefit from the multitude of existing specialized, elaborated, and well-established attribute models. The achieved reasoning function consumes an individual tuple of IT infrastructure components, attributes, and external influencing factors to expose a broad applicability. The process model formalizes a reasoning intent in three phases. First, reasoning goals and parameters are collected in a reasoning suite, and formalized in a reasoning function skeleton. Second, the skeleton is iteratively refined, guided by the reasoning suite. Third, the achieved reasoning function is employed for What-if analyses, optimization, or descriptive statistics to conduct the concrete reasoning. The process model provides five template classes that collectively formalize all phases in order to foster reproducibility and to reduce error-proneness. Process model validation is threefold. A controlled experiment reasons about a Raspberry Pi cluster’s performance and energy efficiency to illustrate feasibility. Besides, a requirements analysis on a world-class supercomputer and on the European-wide execution of hydro meteorology simulations as well as a related work examination disclose the process model’s level of innovation. Potential future work employs prepared automation capabilities, integrates human factors, and uses reasoning results for the automatic generation of modification recommendations.IT-Infrastrukturen können mit Attributen, wie Leistung und Energieeffizienz, quantitativ beschrieben werden. Nutzungsbedarfsänderungen und ökonomische Bestrebungen erfordern Kurz- und Langfristentscheidungen zur Anpassung einer IT-Infrastruktur und insbesondere ihre Attribute an dieses dynamische Umfeld. Potentielle Attribut-Zielkonflikte sowie die zentrale Rolle von IT-Infrastrukturen erfordern eine Entscheidungsfindung mittels Reasoning, einem Prozess, der Rückschlüsse (rein) aus Fakten und Prämissen zieht. Die Fokussierung auf spezifische Teile einer IT-Infrastruktur sowie die Beschränkung auf (sehr) wenige Attribute disqualifizieren bestehende Reasoning-Ansätze für dieses Vorhaben, da sie weder das komplexe Zusammenspiel von IT-Infrastruktur-Komponenten, noch Abhängigkeiten zwischen und innerhalb einzelner Attribute ausreichend berücksichtigen können. Diese Arbeit präsentiert ein Prozessmodell für das integrierte Reasoning über quantitative IT-Infrastruktur-Attribute. Die grundlegende Idee des Prozessmodells ist die Herleitung einer individuellen Reasoning-Funktion, einer mathematischen Abbildung von Einfluss- und Modifikationsparametern auf einen Attributvektor. Die Herleitung basiert auf der Integration bestehender (Attribut-)Modelle, um von deren Spezialisierung, Reife und Verbreitung profitieren zu können. Die erzielte Reasoning-Funktion verarbeitet ein individuelles Tupel aus IT-Infrastruktur-Komponenten, Attributen und externen Einflussfaktoren, um eine breite Anwendbarkeit zu gewährleisten. Das Prozessmodell formalisiert ein Reasoning-Vorhaben in drei Phasen. Zunächst werden die Reasoning-Ziele und -Parameter in einer Reasoning-Suite gesammelt und in einem Reasoning-Funktions-Gerüst formalisiert. Anschließend wird das Gerüst entsprechend den Vorgaben der Reasoning-Suite iterativ verfeinert. Abschließend wird die hergeleitete Reasoning-Funktion verwendet, um mittels “What-if”–Analysen, Optimierungsverfahren oder deskriptiver Statistik das Reasoning durchzuführen. Das Prozessmodell enthält fünf Template-Klassen, die den Prozess formalisieren, um Reproduzierbarkeit zu gewährleisten und Fehleranfälligkeit zu reduzieren. Das Prozessmodell wird auf drei Arten validiert. Ein kontrolliertes Experiment zeigt die Durchführbarkeit des Prozessmodells anhand des Reasonings zur Leistung und Energieeffizienz eines Raspberry Pi Clusters. Eine Anforderungsanalyse an einem Superrechner und an der europaweiten Ausführung von Hydro-Meteorologie-Modellen erläutert gemeinsam mit der Betrachtung verwandter Arbeiten den Innovationsgrad des Prozessmodells. Potentielle Erweiterungen nutzen die vorbereiteten Automatisierungsansätze, integrieren menschliche Faktoren, und generieren Modifikationsempfehlungen basierend auf Reasoning-Ergebnissen

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Understanding Individual Differences within Large-scale Brain Networks across Cognitive Contexts

    Get PDF
    Historically, human neuroimaging has studied brain regions “activated” during behavior and how they differ between groups of people. This approach has improved our understanding of healthy and disordered brain function, but has two key shortcomings. First, focusing on brain activation restricts how we understand the brain, ignoring vital, behind-the-scenes processing. In the past decade, the focus has shifted to communication between brain regions, or connectivity, revealing networks that exhibit subtle, consistent differences across behaviors and diagnoses. Without activation-focused research’s constraints, connectivity-focused neuroimaging research more comprehensively assesses brain function. Second, focusing on group differences ignores substantial within-group heterogeneity and often imposes false dichotomies. Recent findings show that brain network variability within an individual is nearly as great as across a group. Altogether, this illustrates a need for understanding individual variability in brain networks and how it relates to behavior. Therefore, I have developed a pipeline for investigating individual differences in brain connectivity, adapting robust statistical methods to address unique challenges of neuroimaging data analysis. Here, I describe this pipeline and apply it to two datasets. First, I explore between-individual variability in brain connectivity underlying intelligence and academic performance to better understand factors contributing to student success. Second, I assess the relative contributions of stress, sleep, and hormones to within-individual variability in brain connectivity across the menstrual cycle to illuminate little-studied phenomena affecting the everyday lives of half the population. Finally, I introduce a novel signal processing workflow for cleaning electrophysiological measures of bodily stress and arousal in neuroimaging research
    corecore