7,675 research outputs found

    Architectural design rewriting as an architecture description language

    Get PDF
    Architectural Design Rewriting (ADR) is a declarative rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation of graph-based structures and the use of conditional rewrite rules. These features enable the modelling of, e.g. hierarchical design, inductively defined reconfigurations and ordinary computation. Here, we promote ADR as an Architectural Description Language

    Style-Based architectural reconfigurations

    Get PDF
    We introduce Architectural Design Rewriting (ADR), an approach to the design of reconfigurable software architectures whose key features are: (i) rule-based approach (over graphs); (ii) hierarchical design; (iii) algebraic presentation; and (iv) inductively-defined reconfigurations. Architectures are modelled by graphs whose edges and nodes represent components and connection ports. Architectures are designed hierarchically by a set of edge replacement rules that fix the architectural style. Depending on their reading, productions allow: (i) top-down design by refinement, (ii) bottom-up typing of actual architectures, and (iii) well-formed composition of architectures. The key idea is to encode style proofs as terms and to exploit such information at run-time for guiding reconfigurations. The main advantages of ADR are that: (i) instead of reasoning on flat architectures, ADR specifications provide a convenient hierarchical structure, by exploiting the architectural classes introduced by the style, (ii) complex reconfiguration schemes can be defined inductively, and (iii) style-preservation is guaranteed

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Supporting Management lnteraction and Composition of Self-Managed Cells

    No full text
    Management in ubiquitous systems cannot rely on human intervention or centralised decision-making functions because systems are complex and devices are inherently mobile and cannot refer to centralised management applications for reconfiguration and adaptation directives. Management must be devolved, based on local decision-making and feedback control-loops embedded in autonomous components. Previous work has introduced a Self-Managed Cell (SMC) as an infrastructure for building ubiquitous applications. An SMC consists of a set of hardware and software components that implement a policy-driven feedback control-loop. This allows SMCs to adapt continually to changes in their environment or in their usage requirements. Typical applications include body-area networks for healthcare monitoring, and communities of unmanned autonomous vehicles (UAVs) for surveillance and reconnaissance operations. Ubiquitous applications are typically formed from multiple interacting autonomous components, which establish peer-to-peer collaborations, federate and compose into larger structures. Components must interact to distribute management tasks and to enforce communication strategies. This thesis presents an integrated framework which supports the design and the rapid establishment of policy-based SMC interactions by systematically composing simpler abstractions as building elements of a more complex collaboration. Policy-based interactions are realised – subject to an extensible set of security functions – through the exchanges of interfaces, policies and events, and our framework was designed to support the specification, instantiation and reuse of patterns of interaction that prescribe the manner in which these exchanges are achieved. We have defined a library of patterns that provide reusable abstractions for the structure, task-allocation and communication aspects of an interaction, which can be individually combined for building larger policy-based systems in a methodical manner. We have specified a formal model to ensure the rigorous verification of SMC interactions before policies are deployed in physical devices. A prototype has been implemented that demonstrates the practical feasibility of our framework in constrained resources

    Современные аспекты и анализ использования орнамента в архитектуре Казахстана

    Full text link
    This article discusses modern state of usage of national ornament in architecture of Kazakhstan.В статье рассматривается современное состояние использования национального орнамента в архитектуре Казахстана
    corecore