8,545 research outputs found

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.Comment: Manuscript accepted for publication in IEEE ICRA 201

    An Alternative Fuel Refueling Station Location Model considering Detour Traffic Flows on a Highway Road System

    Get PDF
    With the development of alternative fuel (AF) vehicle technologies, studies on finding the potential location of AF refueling stations in transportation networks have received considerable attention. Due to the strong limited driving range, AF vehicles for long-distance intercity trips may require multiple refueling stops at different locations on the way to their destination, which makes the AF refueling station location problem more challenging. In this paper, we consider that AF vehicles requiring multiple refueling stops at different locations during their long-distance intercity trips are capable of making detours from their preplanned paths and selecting return paths that may be different from original paths for their round trips whenever AF refueling stations are not available along the preplanned paths. These options mostly need to be considered when an AF refueling infrastructure is not fully developed on a highway system. To this end, we first propose an algorithm to generate alternative paths that may provide the multiple AF refueling stops between all origin/destination (OD) vertices. Then, a new mixed-integer programming model is proposed to locate AF refueling stations within a preselected set of candidate sites on a directed transportation network by maximizing the coverage of traffic flows along multiple paths. We first test our mathematical model with the proposed algorithm on a classical 25-vertex network with 25 candidate sites through various scenarios that consider a different number of paths for each OD pair, deviation factors, and limited driving ranges of vehicles. Then, we apply our proposed model to locate liquefied natural gas refueling stations in the state of Pennsylvania considering the construction budget. Our results show that the number of alternative paths and deviation distance available significantly affect the coverage of traffic flows at the stations as well as computational time

    A Service-Oriented Approach to Crowdsensing for Accessible Smart Mobility Scenarios

    Get PDF
    This work presents an architecture to help designing and deploying smart mobility applications. The proposed solution builds on the experience already matured by the authors in different fields: crowdsourcing and sensing done by users to gather data related to urban barriers and facilities, computation of personalized paths for users with special needs, and integration of open data provided by bus companies to identify the actual accessibility features and estimate the real arrival time of vehicles at stops. In terms of functionality, the first "monolithic" prototype fulfilled the goal of composing the aforementioned pieces of information to support citizens with reduced mobility (users with disabilities and/or elderly people) in their urban movements. In this paper, we describe a service-oriented architecture that exploits the microservices orchestration paradigm to enable the creation of new services and to make the management of the various data sources easier and more effective. The proposed platform exposes standardized interfaces to access data, implements common services to manage metadata associated with them, such as trustworthiness and provenance, and provides an orchestration language to create complex services, naturally mapping their internal workflow to code. The manuscript demonstrates the effectiveness of the approach by means of some case studies

    A cloud-assisted design for autonomous driving

    Get PDF
    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous vehicles that use this system to avoid obstacles such as pedestrians and other vehicles that may not be directly detected by sensors on the vehicle. Further, Carcel enables vehicles to plan efficient paths that account for unexpected events such as road-work or accidents. We evaluate a preliminary prototype of Carcel on a state-of-the-art autonomous driving system in an outdoor testbed including an autonomous golf car and six iRobot Create robots. Results show that Carcel reduces the average time vehicles need to detect obstacles such as pedestrians by 4.6x compared to today's systems that do not have access to the cloud.Smart.fmNational Science Foundation (U.S.

    Wayfinding localized research practices through mobile technology

    Get PDF
    This dissertation presents wayfinding—the process of orienting oneself amid the myriad users, technologies, and digital spaces impacting any writing work—as a research methodology for contextualizing writing in mobile environments. Central to web design and non-web service design, wayfinding is an important addition to rhetoric and writing studies. First, it is descriptive: it observes and records first, showing how people go about tasks, and revealing relationships among people and their environments. Second, it helps when people get lost and then found. It records traces of the mental work people do to get unlost. Finding themselves, peoples’ maps help them both narrate the experience of finding their way as well as to recover their process by “reading over the map,” a process central to chapter 4. Third, wayfinding informs the scholarly representation of method, allowing for discussions of research to be grounded in a contextual, reflexive methodology of practice. We find ourselves, as scholars, amid the stories we tell to make sense of the fields of study we pursue and chapter 5 includes articulations of our scholarly wayfinding conversations. These stories describe how being self-conscious about using the design language of wayfinding will help keep rhetorical methodology in the forefront of our conversations about mobile writing and research practices

    Active Virtual Network Management Prediction: Complexity as a Framework for Prediction, Optimization, and Assurance

    Full text link
    Research into active networking has provided the incentive to re-visit what has traditionally been classified as distinct properties and characteristics of information transfer such as protocol versus service; at a more fundamental level this paper considers the blending of computation and communication by means of complexity. The specific service examined in this paper is network self-prediction enabled by Active Virtual Network Management Prediction. Computation/communication is analyzed via Kolmogorov Complexity. The result is a mechanism to understand and improve the performance of active networking and Active Virtual Network Management Prediction in particular. The Active Virtual Network Management Prediction mechanism allows information, in various states of algorithmic and static form, to be transported in the service of prediction for network management. The results are generally applicable to algorithmic transmission of information. Kolmogorov Complexity is used and experimentally validated as a theory describing the relationship among algorithmic compression, complexity, and prediction accuracy within an active network. Finally, the paper concludes with a complexity-based framework for Information Assurance that attempts to take a holistic view of vulnerability analysis
    corecore