188 research outputs found

    Solving Parity Games in Scala

    Get PDF
    Parity games are two-player games, played on directed graphs, whose nodes are labeled with priorities. Along a play, the maximal priority occurring infinitely often determines the winner. In the last two decades, a variety of algorithms and successive optimizations have been proposed. The majority of them have been implemented in PGSolver, written in OCaml, which has been elected by the community as the de facto platform to solve efficiently parity games as well as evaluate their performance in several specific cases. PGSolver includes the Zielonka Recursive Algorithm that has been shown to perform better than the others in randomly generated games. However, even for arenas with a few thousand of nodes (especially over dense graphs), it requires minutes to solve the corresponding game. In this paper, we deeply revisit the implementation of the recursive algorithm introducing several improvements and making use of Scala Programming Language. These choices have been proved to be very successful, gaining up to two orders of magnitude in running time

    SCALO: Scalability-Aware Parallelism Orchestration for Multi-Threaded Workloads

    Get PDF
    This article contributes a solution to orchestrate concurrent application execution to increase throughput. SCALO monitors co-executing applications at runtime to evaluate their scalability

    Quantifying Daily Evolution of Mobile Software Based on Memory Allocator Churn

    Get PDF
    The pace and volume of code churn necessary to evolve modern software systems present challenges for analyzing the performance impact of any set of code changes. Traditional methods used in performance analysis rely on extensive data collection and profiling, which often takes days. For large organizations utilizing Continuous Integration (CI) and Continuous Deployment (CD), these traditional techniques often fail to provide timely and actionable data. A different impact analysis method that allows for more efficient detection of performance regressions is needed. We propose the utilization of user mode memory allocator churn as a novel approach to performance engineering. User mode allocator churn acts as a proxy metric to evaluate the relative change in the cost of specific tasks. We prototyped the memory allocation churn methodology while engaged in performance engineering for an iOS version of application X. We find that calculating and analyzing memory allocator churn (a) results in deterministic measurements, (b) is efficient for determining the presence of both individual performance regressions and general performance-related trends, and (c) is a suitable alternative to measuring the task completion time

    Simulation of High-Performance Memory Allocators

    Get PDF
    This study presents a single-core and a multi-core processor architecture for health monitoring systems where slow biosignal events and highly parallel computations exist. The single-core architecture is composed of a processing core (PC), an instruction memory (IM) and a data memory (DM), while the multi-core architecture consists of PCs, individual IMs for each core, a shared DM and an interconnection crossbar between the cores and the DM. These architectures are compared with respect to power vs. performance trade-offs for a multi-lead electrocardiogram signal conditioning application exploiting near threshold computing. The results show that the multi-core solution consumes 66%less power for high computation requirements (50.1 MOps/s), whereas 10.4% more power for low computation needs (681 kOps/s)

    Simulation of High-Performance Memory Allocators

    Get PDF
    Current general-purpose memory allocators do not provide sufficient speed or flexibility for modern highperformance applications. To optimize metrics like performance, memory usage and energy consumption, software engineers often write custom allocators from scratch, which is a difficult and error-prone process. In this paper, we present a flexible and efficient simulator to study Dynamic Memory Managers (DMMs), a composition of one or more memory allocators. This novel approach allows programmers to simulate custom and general DMMs, which can be composed without incurring any additional runtime overhead or additional programming cost. We show that this infrastructure simplifies DMM construction, mainly because the target application does not need to be compiled every time a new DMM must be evaluated. Within a search procedure, the system designer can choose the "best" allocator by simulation for a particular target application. In our evaluation, we show that our scheme will deliver better performance, less memory usage and less energy consumption than single memory allocator

    Automated Exploration of Pareto-optimal Configurations in Parameterized Dynamic Memory Allocation for Embedded Systems

    Get PDF
    New applications in embedded systems are becoming Increasingly dynamic. In addition to increased dynamism, they have massive data storage needs. Therefore, they rely heavily on dynamic, run-time memory allocation. The design and configuration of a dynamic memory allocation subsystem requires a big design effort, without always achieving the desired results. In this paper, we propose a fully automated exploration of dynamic memory allocation configurations. These configurations are fine tuned to the specific needs of applications with the use of a number of parameters. We assess the effectiveness of the proposed approach in two representative real-life case studies of the multimedia and wireless network domains and show up to 76% decrease in memory accesses and 66% decrease in memory footprint within the Pareto-optimal trade-off space

    Simulation of High-Performance Memory Allocators

    Get PDF
    Current general-purpose memory allocators do not provide sufficient speed or flexibility for modern highperformance applications. To optimize metrics like performance, memory usage and energy consumption, software engineers often write custom allocators from scratch, which is a difficult and error-prone process. In this paper, we present a flexible and efficient simulator to study Dynamic Memory Managers (DMMs), a composition of one or more memory allocators. This novel approach allows programmers to simulate custom and general DMMs, which can be composed without incurring any additional runtime overhead or additional programming cost. We show that this infrastructure simplifies DMM construction, mainly because the target application does not need to be compiled every time a new DMM must be evaluated. Within a search procedure, the system designer can choose the "best" allocator by simulation for a particular target application. In our evaluation, we show that our scheme will deliver better performance, less memory usage and less energy consumption than single memory allocators

    Learning dynamic algorithm portfolios

    Get PDF
    Algorithm selection can be performed using a model of runtime distribution, learned during a preliminary training phase. There is a trade-off between the performance of model-based algorithm selection, and the cost of learning the model. In this paper, we treat this trade-off in the context of bandit problems. We propose a fully dynamic and online algorithm selection technique, with no separate training phase: all candidate algorithms are run in parallel, while a model incrementally learns their runtime distributions. A redundant set of time allocators uses the partially trained model to propose machine time shares for the algorithms. A bandit problem solver mixes the model-based shares with a uniform share, gradually increasing the impact of the best time allocators as the model improves. We present experiments with a set of SAT solvers on a mixed SAT-UNSAT benchmark; and with a set of solvers for the Auction Winner Determination proble

    Paramecium: An Extensible Object-Based Kernel

    Get PDF
    In this paper we describe the design of an extensible kernel, called Paramecium. This kernel uses an object-based software architecture which together with instance naming, late binding and explicit overrides enables easy reconfiguration. Determining which components reside in the kernel protection domain is up to the user. An certification authority or one of its delegates certifies which components are trustworthy and therefore permitted to run in the kernel protection domain. These delegates may include validation programs, correctness provers, and system administrators. The main advantage of certifications is that it can handle trust and sharing in a non-cooperative environment
    • …
    corecore