19 research outputs found

    Componentwise accurate fluid queue computations using doubling algorithms

    Get PDF
    Markov-modulated fluid queues are popular stochastic processes frequently used for modelling real-life applications. An important performance measure to evaluate in these applications is their steady-state behaviour, which is determined by the stationary density. Computing it requires solving a (nonsymmetric) M-matrix algebraic Riccati equation, and indeed computing the stationary density is the most important application of this class of equations. Xue et al. (Numer Math 120:671–700, 2012) provided a componentwise first-order perturbation analysis of this equation, proving that the solution can be computed to high relative accuracy even in the smallest entries, and suggested several algorithms for computing it. An important step in all proposed algorithms is using so-called triplet representations, which are special representations for M-matrices that allow for a high-accuracy variant of Gaussian elimination, the GTH-like algorithm. However, triplet representations for all the M-matrices needed in the algorithm were not found explicitly. This can lead to an accuracy loss that prevents the algorithms from converging in the componentwise sense. In this paper, we focus on the structured doubling algorithm, the most efficient among the proposed methods in Xue et al., and build upon their results, providing (i) explicit and cancellation-free expressions for the needed triplet representations, allowing the algorithm to be performed in a really cancellation-free fashion; (ii) an algorithm to evaluate the final part of the computation to obtain the stationary density; and (iii) a componentwise error analysis for the resulting algorithm, the first explicit one for this class of algorithms. We also present numerical results to illustrate the accuracy advantage of our method over standard (normwise-accurate) algorithms. © 2014, Springer-Verlag Berlin Heidelberg

    Iterative and doubling algorithms for Riccati-type matrix equations: a comparative introduction

    Full text link
    We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of \emph{doubling}: they construct the iterate Qk=X2kQ_k = X_{2^k} of another naturally-arising fixed-point iteration (Xh)(X_h) via a sort of repeated squaring. The equations we consider are Stein equations X−A∗XA=QX - A^*XA=Q, Lyapunov equations A∗X+XA+Q=0A^*X+XA+Q=0, discrete-time algebraic Riccati equations X=Q+A∗X(I+GX)−1AX=Q+A^*X(I+GX)^{-1}A, continuous-time algebraic Riccati equations Q+A∗X+XA−XGX=0Q+A^*X+XA-XGX=0, palindromic quadratic matrix equations A+QY+A∗Y2=0A+QY+A^*Y^2=0, and nonlinear matrix equations X+A∗X−1A=QX+A^*X^{-1}A=Q. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.Comment: Review article for GAMM Mitteilunge

    Palindromic linearization and numerical solution of nonsymmetric algebraic T-Riccati equations

    Get PDF
    We identify a relationship between the solutions of a nonsymmetric algebraic T Riccati equation (T -NARE) and the deflating subspaces of a palindromic matrix pencil, obtained by arranging the coefficients of the T -NARE. The interplay between T NAREs and palindromic pencils allows one to derive both theoretical properties of the solutions of the equation, and new methods for its numerical solution. In particular, we propose methods based on the (palindromic) QZ algorithm and the doubling algorithm, whose effectiveness is demonstrated by several numerical tests
    corecore