567 research outputs found

    Robust Learning from Bites

    Get PDF
    Many robust statistical procedures have two drawbacks. Firstly, they are computer-intensive such that they can hardly be used for massive data sets. Secondly, robust confidence intervals for the estimated parameters or robust predictions according to the fitted models are often unknown. Here, we propose a general method to overcome these problems of robust estimation in the context of huge data sets. The method is scalable to the memory of the computer, can be distributed on several processors if available, and can help to reduce the computation time substantially. The method additionally offers distribution-free confidence intervals for the median of the predictions. The method is illustrated for two situations: robust estimation in linear regression and kernel logistic regression from statistical machine learning. --

    Linear system identification using stable spline kernels and PLQ penalties

    Full text link
    The classical approach to linear system identification is given by parametric Prediction Error Methods (PEM). In this context, model complexity is often unknown so that a model order selection step is needed to suitably trade-off bias and variance. Recently, a different approach to linear system identification has been introduced, where model order determination is avoided by using a regularized least squares framework. In particular, the penalty term on the impulse response is defined by so called stable spline kernels. They embed information on regularity and BIBO stability, and depend on a small number of parameters which can be estimated from data. In this paper, we provide new nonsmooth formulations of the stable spline estimator. In particular, we consider linear system identification problems in a very broad context, where regularization functionals and data misfits can come from a rich set of piecewise linear quadratic functions. Moreover, our anal- ysis includes polyhedral inequality constraints on the unknown impulse response. For any formulation in this class, we show that interior point methods can be used to solve the system identification problem, with complexity O(n3)+O(mn2) in each iteration, where n and m are the number of impulse response coefficients and measurements, respectively. The usefulness of the framework is illustrated via a numerical experiment where output measurements are contaminated by outliers.Comment: 8 pages, 2 figure

    CMA – a comprehensive Bioconductor package for supervised classification with high dimensional data

    Get PDF
    For the last eight years, microarray-based class prediction has been a major topic in statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory results or may even be inapplicable in the p > n setting where the number of predictors by far exceeds the number of observations, hence the term “ill-posed-problem”. Careful model selection and evaluation satisfying accepted good-practice standards is a very complex task for inexperienced users with limited statistical background or for statisticians without experience in this area. The multiplicity of available methods for class prediction based on high-dimensional data is an additional practical challenge for inexperienced researchers. In this article, we introduce a new Bioconductor package called CMA (standing for “Classification for MicroArrays”) for automatically performing variable selection, parameter tuning, classifier construction, and unbiased evaluation of the constructed classifiers using a large number of usual methods. Without much time and effort, users are provided with an overview of the unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation framework underlying CMA can also be beneficial in statistical research for comparison purposes, for instance if a new classifier has to be compared to existing approaches. CMA is a user-friendly comprehensive package for classifier construction and evaluation implementing most usual approaches. It is freely available from the Bioconductor website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html

    CMA – a comprehensive Bioconductor package for supervised classification with high dimensional data

    Get PDF
    For the last eight years, microarray-based class prediction has been a major topic in statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory results or may even be inapplicable in the p > n setting where the number of predictors by far exceeds the number of observations, hence the term “ill-posed-problem”. Careful model selection and evaluation satisfying accepted good-practice standards is a very complex task for inexperienced users with limited statistical background or for statisticians without experience in this area. The multiplicity of available methods for class prediction based on high-dimensional data is an additional practical challenge for inexperienced researchers. In this article, we introduce a new Bioconductor package called CMA (standing for “Classification for MicroArrays”) for automatically performing variable selection, parameter tuning, classifier construction, and unbiased evaluation of the constructed classifiers using a large number of usual methods. Without much time and effort, users are provided with an overview of the unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation framework underlying CMA can also be beneficial in statistical research for comparison purposes, for instance if a new classifier has to be compared to existing approaches. CMA is a user-friendly comprehensive package for classifier construction and evaluation implementing most usual approaches. It is freely available from the Bioconductor website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html

    Surprises in High-Dimensional Ridgeless Least Squares Interpolation

    Full text link
    Interpolators -- estimators that achieve zero training error -- have attracted growing attention in machine learning, mainly because state-of-the art neural networks appear to be models of this type. In this paper, we study minimum 2\ell_2 norm (``ridgeless'') interpolation in high-dimensional least squares regression. We consider two different models for the feature distribution: a linear model, where the feature vectors xiRpx_i \in {\mathbb R}^p are obtained by applying a linear transform to a vector of i.i.d.\ entries, xi=Σ1/2zix_i = \Sigma^{1/2} z_i (with ziRpz_i \in {\mathbb R}^p); and a nonlinear model, where the feature vectors are obtained by passing the input through a random one-layer neural network, xi=φ(Wzi)x_i = \varphi(W z_i) (with ziRdz_i \in {\mathbb R}^d, WRp×dW \in {\mathbb R}^{p \times d} a matrix of i.i.d.\ entries, and φ\varphi an activation function acting componentwise on WziW z_i). We recover -- in a precise quantitative way -- several phenomena that have been observed in large-scale neural networks and kernel machines, including the "double descent" behavior of the prediction risk, and the potential benefits of overparametrization.Comment: 68 pages; 16 figures. This revision contains non-asymptotic version of earlier results, and results for general coefficient
    corecore