303,149 research outputs found

    Components in time-varying graphs

    Full text link
    Real complex systems are inherently time-varying. Thanks to new communication systems and novel technologies, it is today possible to produce and analyze social and biological networks with detailed information on the time of occurrence and duration of each link. However, standard graph metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs in which the links do not change over time, or graphs built from time-varying systems by aggregating all the links as if they were concurrent in time. In this paper, we extend the notion of connectedness, and the definitions of node and graph components, to the case of time-varying graphs, which are represented as time-ordered sequences of graphs defined over a fixed set of nodes. We show that the problem of finding strongly connected components in a time-varying graph can be mapped into the problem of discovering the maximal-cliques in an opportunely constructed static graph, which we name the affine graph. It is therefore an NP-complete problem. As a practical example, we have performed a temporal component analysis of time-varying graphs constructed from three data sets of human interactions. The results show that taking time into account in the definition of graph components allows to capture important features of real systems. In particular, we observe a large variability in the size of node temporal in- and out-components. This is due to intrinsic fluctuations in the activity patterns of individuals, which cannot be detected by static graph analysis.Comment: 12 pages, 4 figures, 3 table

    Graph Metrics for Temporal Networks

    Get PDF
    Temporal networks, i.e., networks in which the interactions among a set of elementary units change over time, can be modelled in terms of time-varying graphs, which are time-ordered sequences of graphs over a set of nodes. In such graphs, the concepts of node adjacency and reachability crucially depend on the exact temporal ordering of the links. Consequently, all the concepts and metrics proposed and used for the characterisation of static complex networks have to be redefined or appropriately extended to time-varying graphs, in order to take into account the effects of time ordering on causality. In this chapter we discuss how to represent temporal networks and we review the definitions of walks, paths, connectedness and connected components valid for graphs in which the links fluctuate over time. We then focus on temporal node-node distance, and we discuss how to characterise link persistence and the temporal small-world behaviour in this class of networks. Finally, we discuss the extension of classic centrality measures, including closeness, betweenness and spectral centrality, to the case of time-varying graphs, and we review the work on temporal motifs analysis and the definition of modularity for temporal graphs.Comment: 26 pages, 5 figures, Chapter in Temporal Networks (Petter Holme and Jari Saram\"aki editors). Springer. Berlin, Heidelberg 201

    Asymmetric evolving random networks

    Full text link
    We generalize the poissonian evolving random graph model of Bauer and Bernard to deal with arbitrary degree distributions. The motivation comes from biological networks, which are well-known to exhibit non poissonian degree distribution. A node is added at each time step and is connected to the rest of the graph by oriented edges emerging from older nodes. This leads to a statistical asymmetry between incoming and outgoing edges. The law for the number of new edges at each time step is fixed but arbitrary. Thermodynamical behavior is expected when this law has a large time limit. Although (by construction) the incoming degree distributions depend on this law, this is not the case for most qualitative features concerning the size distribution of connected components, as long as the law has a finite variance. As the variance grows above 1/4, the average being <1/2, a giant component emerges, which connects a finite fraction of the vertices. Below this threshold, the distribution of component sizes decreases algebraically with a continuously varying exponent. The transition is of infinite order, in sharp contrast with the case of static graphs. The local-in-time profiles for the components of finite size allow to give a refined description of the system.Comment: 30 pages, 3 figure

    Time-varying Reeb graphs: a topological framework supporting the analysis of continuous time-varying data

    Get PDF
    I present time-varying Reeb graphs as a topological framework to support the analysis of continuous time-varying data. Such data is captured in many studies, including computational fluid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scientific datasets is level sets, which are the points in space with a fixed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets. The Reeb graph essentially contracts each level set component to a point. It can be computed efficiently, and it has several uses: as a succinct summary of the data, as an interface to select meaningful level sets, as a data structure to accelerate level set extraction, and as a guide to remove noise. I extend these uses of Reeb graphs to time-varying data. I characterize the changes to Reeb graphs over time, and develop an algorithm that can maintain a Reeb graph data structure by tracking these changes over time. I store this sequence of Reeb graphs compactly, and call it a time-varying Reeb graph. I augment the time-varying Reeb graph with information that records the topology of level sets of all level values at all times, that maintains the correspondence of level set components over time, and that accelerates the extraction of level sets for a chosen level value and time. Scientific data sampled in space-time must be extended everywhere in this domain using an interpolant. A poor choice of interpolant can create degeneracies that are difficult to resolve, making construction of time-varying Reeb graphs impractical. I investigate piecewise-linear, piecewise-trilinear, and piecewise-prismatic interpolants, and conclude that piecewise-prismatic is the best choice for computing time-varying Reeb graphs. Large Reeb graphs must be simplified for an effective presentation in a visualization system. I extend an algorithm for simplifying static Reeb graphs to compute simplifications of time-varying Reeb graphs as a first step towards building a visualization system to support the analysis of time-varying data

    Time-varying Reeb graphs: a topological framework supporting the analysis of continuous time-varying data

    Get PDF
    I present time-varying Reeb graphs as a topological framework to support the analysis of continuous time-varying data. Such data is captured in many studies, including computational fluid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scientific datasets is level sets, which are the points in space with a fixed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets. The Reeb graph essentially contracts each level set component to a point. It can be computed efficiently, and it has several uses: as a succinct summary of the data, as an interface to select meaningful level sets, as a data structure to accelerate level set extraction, and as a guide to remove noise. I extend these uses of Reeb graphs to time-varying data. I characterize the changes to Reeb graphs over time, and develop an algorithm that can maintain a Reeb graph data structure by tracking these changes over time. I store this sequence of Reeb graphs compactly, and call it a time-varying Reeb graph. I augment the time-varying Reeb graph with information that records the topology of level sets of all level values at all times, that maintains the correspondence of level set components over time, and that accelerates the extraction of level sets for a chosen level value and time. Scientific data sampled in space-time must be extended everywhere in this domain using an interpolant. A poor choice of interpolant can create degeneracies that are difficult to resolve, making construction of time-varying Reeb graphs impractical. I investigate piecewise-linear, piecewise-trilinear, and piecewise-prismatic interpolants, and conclude that piecewise-prismatic is the best choice for computing time-varying Reeb graphs. Large Reeb graphs must be simplified for an effective presentation in a visualization system. I extend an algorithm for simplifying static Reeb graphs to compute simplifications of time-varying Reeb graphs as a first step towards building a visualization system to support the analysis of time-varying data

    Feedback topology and XOR-dynamics in Boolean networks with varying input structure

    Full text link
    We analyse a model of fixed in-degree Random Boolean Networks in which the fraction of input-receiving nodes is controlled by a parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control, and as rich as the one of general Boolean networks. Biologically, it is justified on abstract grounds by the fact that all existing interactions play a dynamical role. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma, this graph ensemble shows a phase transition that separates a tree-like graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact we provide analytical estimates of the maximum period starting from topological considerations

    The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions

    Full text link
    [EN] This paper introduces a new approach for improving the fault diagnosis in induction motors under time-varying conditions. A significant amount of published approaches in this field rely on representing the stator current in the time-frequency domain, and identifying the characteristic signatures that each type of fault generates in this domain. However, time-frequency transforms produce three-dimensional (3-D) representations, very costly in terms of storage and processing resources. Moreover, the identification and evaluation of the fault components in the time-frequency plane requires a skilled staff or advanced pattern detection algorithms. The proposed methodology solves these problem by transforming the complex 3-D spectrograms supplied by time-frequency tools into simple x-y graphs, similar to conventional Fourier spectra. These graphs display a unique pattern for each type of fault, even under supply or load time-varying conditions, making easy and reliable the diagnostic decision even for nonskilled staff. Moreover, the resulting patterns can be condensed in a very small dataset, reducing greatly the storage or transmission requirements regarding to conventional spectrograms. The proposed method is an extension to nonstationary conditions of the harmonic order tracking approach. It is introduced theoretically and validated experimentally by using the commercial induction motors feed through electronic converters.This work was supported by the Spanish "Ministerio de Economia y Competitividad" in the framework of the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" (Project reference DPI2014-60881-R). Paper no. TEC-00176-2016.Sapena-Bano, A.; Burriel-Valencia, J.; Pineda-Sanchez, M.; Puche-Panadero, R.; Riera-Guasp, M. (2017). The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions. IEEE Transactions on Energy Conversion. 32(1):244-256. doi:10.1109/TEC.2016.2626008S24425632

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System
    • …
    corecore