2,470 research outputs found

    Component-level study of a decomposition-based multi-objective optimizer on a limited evaluation budget

    Get PDF
    Decomposition-based algorithms have emerged as one of the most popular classes of solvers for multi-objective optimization. Despite their popularity, a lack of guidance exists for how to configure such algorithms for real-world problems, based on the features or contexts of those problems. One context that is important for many real-world problems is that function evaluations are expensive, and so algorithms need to be able to provide adequate convergence on a limited budget (e.g. 500 evaluations). This study contributes to emerging guidance on algorithm configuration by investigating how the convergence of the popular decomposition-based optimizer MOEA/D, over a limited budget, is affected by choice of component level configuration. Two main aspects are considered: (1) impact of sharing information; (2) impact of normalisation scheme. The empirical test framework includes detailed trajectory analysis, as well as more conventional performance indicator analysis, to help identify and explain the behaviour of the optimizer. Use of neighbours in generating new solutions is found to be highly disruptive for searching on a small budget, leading to better convergence in some areas but far worse convergence in others. The findings also emphasise the challenge and importance of using an appropriate normalisation scheme

    Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems

    Get PDF
    This paper addresses the issue of computational resource allocation within the context of cooperative coevolution. Cooperative coevolution typically works by breaking a problem down into smaller subproblems (or components) and coevolving them in a round-robin fashion, resulting in a uniform resource allocation among its components. Despite its success on a wide range of problems, cooperative coevolution struggles to perform efficiently when its components do not contribute equally to the overall objective value. This is of crucial importance on large-scale optimization problems where such difference are further magnified. To resolve this imbalance problem, we extend the standard cooperative coevolution to a new generic framework capable of learning the contribution of each component using multi-armed bandit techniques. The new framework allocates the computational resources to each component proportional to their contributions towards improving the overall objective value. This approach results in a more economical use of the limited computational resources. We study different aspects of the proposed framework in the light of extensive experiments. Our empirical results confirm that even a simple bandit-based credit assignment scheme can significantly improve the performance of cooperative coevolution on large-scale continuous problems, leading to competitive performance as compared to the state-of-the-art algorithms

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    Contribution based multi-island competitive cooperative coevolution

    Get PDF
    Competition in cooperative coevolution (CC) has demonstrated success in solving global optimization problems. In a recent study, a multi-island competitive cooperative coevolution (MIC3) algorithm was introduced that featured competition and collaboration of several different problem decomposition strategies implemented as independent islands. It was shown that MIC3converges to high quality solutions without the need to find an optimal decomposition. MIC3splits the computational budget in terms of the number of function evaluations, equally amongst all the islands and evolves them in a round-robin fashion. This overlooks the difference in contributions of different islands towards improving the overall objective function value. Therefore, a considerable amount of function evaluations is wasted on the low-contributing islands as their problem decomposition strategies may not appeal to the problem at the given stage of the evolutionary process. This paper proposes contribution-based MIC3 algorithms (MIC4) that quantifies the contributions of each island and allocates the computational budget accordingly. The experimental analysis reveals that the proposed method outperforms its counterpart

    Towards Better Integration of Surrogate Models and Optimizers

    Get PDF
    Surrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven to be very effective in solving (synthetic and real-world) computationally expensive optimization problems with a limited number of function evaluations. The two main components of SAEAs are: the surrogate model and the evolutionary optimizer, both of which use parameters to control their respective behavior. These parameters are likely to interact closely, and hence the exploitation of any such relationships may lead to the design of an enhanced SAEA. In this chapter, as a first step, we focus on Kriging and the Efficient Global Optimization (EGO) framework. We discuss potentially profitable ways of a better integration of model and optimizer. Furthermore, we investigate in depth how different parameters of the model and the optimizer impact optimization results. In particular, we determine whether there are any interactions between these parameters, and how the problem characteristics impact optimization results. In the experimental study, we use the popular Black-Box Optimization Benchmarking (BBOB) testbed. Interestingly, the analysis finds no evidence for significant interactions between model and optimizer parameters, but independently their performance has a significant interaction with the objective function. Based on our results, we make recommendations on how best to configure EGO

    An ADMM Based Framework for AutoML Pipeline Configuration

    Full text link
    We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines. This black-box (gradient-free) optimization with mixed integer & continuous variables is a challenging problem. We propose a novel AutoML scheme by leveraging the alternating direction method of multipliers (ADMM). The proposed framework is able to (i) decompose the optimization problem into easier sub-problems that have a reduced number of variables and circumvent the challenge of mixed variable categories, and (ii) incorporate black-box constraints along-side the black-box optimization objective. We empirically evaluate the flexibility (in utilizing existing AutoML techniques), effectiveness (against open source AutoML toolkits),and unique capability (of executing AutoML with practically motivated black-box constraints) of our proposed scheme on a collection of binary classification data sets from UCI ML& OpenML repositories. We observe that on an average our framework provides significant gains in comparison to other AutoML frameworks (Auto-sklearn & TPOT), highlighting the practical advantages of this framework
    • …
    corecore