9,508 research outputs found

    Component-based Attention for Large-scale Trademark Retrieval

    Full text link
    The demand for large-scale trademark retrieval (TR) systems has significantly increased to combat the rise in international trademark infringement. Unfortunately, the ranking accuracy of current approaches using either hand-crafted or pre-trained deep convolution neural network (DCNN) features is inadequate for large-scale deployments. We show in this paper that the ranking accuracy of TR systems can be significantly improved by incorporating hard and soft attention mechanisms, which direct attention to critical information such as figurative elements and reduce attention given to distracting and uninformative elements such as text and background. Our proposed approach achieves state-of-the-art results on a challenging large-scale trademark dataset.Comment: Fix typos related to authors' informatio

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    Learning Test-time Data Augmentation for Image Retrieval with Reinforcement Learning

    Full text link
    Off-the-shelf convolutional neural network features achieve outstanding results in many image retrieval tasks. However, their invariance is pre-defined by the network architecture and training data. Existing image retrieval approaches require fine-tuning or modification of the pre-trained networks to adapt to the variations in the target data. In contrast, our method enhances the invariance of off-the-shelf features by aggregating features extracted from images augmented with learned test-time augmentations. The optimal ensemble of test-time augmentations is learned automatically through reinforcement learning. Our training is time and resources efficient, and learns a diverse test-time augmentations. Experiment results on trademark retrieval (METU trademark dataset) and landmark retrieval (Oxford5k and Paris6k scene datasets) tasks show the learned ensemble of transformations is effective and transferable. We also achieve state-of-the-art MAP@100 results on the METU trademark dataset

    MTRNet: A Generic Scene Text Eraser

    Full text link
    Text removal algorithms have been proposed for uni-lingual scripts with regular shapes and layouts. However, to the best of our knowledge, a generic text removal method which is able to remove all or user-specified text regions regardless of font, script, language or shape is not available. Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting. To fill this gap, we propose a mask-based text removal network (MTRNet). MTRNet is a conditional adversarial generative network (cGAN) with an auxiliary mask. The introduced auxiliary mask not only makes the cGAN a generic text eraser, but also enables stable training and early convergence on a challenging large-scale synthetic dataset, initially proposed for text detection in real scenes. What's more, MTRNet achieves state-of-the-art results on several real-world datasets including ICDAR 2013, ICDAR 2017 MLT, and CTW1500, without being explicitly trained on this data, outperforming previous state-of-the-art methods trained directly on these datasets.Comment: Presented at ICDAR2019 Conferenc

    Trademark image retrieval by local features

    Get PDF
    The challenge of abstract trademark image retrieval as a test of machine vision algorithms has attracted considerable research interest in the past decade. Current operational trademark retrieval systems involve manual annotation of the images (the current ‘gold standard’). Accordingly, current systems require a substantial amount of time and labour to access, and are therefore expensive to operate. This thesis focuses on the development of algorithms that mimic aspects of human visual perception in order to retrieve similar abstract trademark images automatically. A significant category of trademark images are typically highly stylised, comprising a collection of distinctive graphical elements that often include geometric shapes. Therefore, in order to compare the similarity of such images the principal aim of this research has been to develop a method for solving the partial matching and shape perception problem. There are few useful techniques for partial shape matching in the context of trademark retrieval, because those existing techniques tend not to support multicomponent retrieval. When this work was initiated most trademark image retrieval systems represented images by means of global features, which are not suited to solving the partial matching problem. Instead, the author has investigated the use of local image features as a means to finding similarities between trademark images that only partially match in terms of their subcomponents. During the course of this work, it has been established that the Harris and Chabat detectors could potentially perform sufficiently well to serve as the basis for local feature extraction in trademark image retrieval. Early findings in this investigation indicated that the well established SIFT (Scale Invariant Feature Transform) local features, based on the Harris detector, could potentially serve as an adequate underlying local representation for matching trademark images. There are few researchers who have used mechanisms based on human perception for trademark image retrieval, implying that the shape representations utilised in the past to solve this problem do not necessarily reflect the shapes contained in these image, as characterised by human perception. In response, a ii practical approach to trademark image retrieval by perceptual grouping has been developed based on defining meta-features that are calculated from the spatial configurations of SIFT local image features. This new technique measures certain visual properties of the appearance of images containing multiple graphical elements and supports perceptual grouping by exploiting the non-accidental properties of their configuration. Our validation experiments indicated that we were indeed able to capture and quantify the differences in the global arrangement of sub-components evident when comparing stylised images in terms of their visual appearance properties. Such visual appearance properties, measured using 17 of the proposed metafeatures, include relative sub-component proximity, similarity, rotation and symmetry. Similar work on meta-features, based on the above Gestalt proximity, similarity, and simplicity groupings of local features, had not been reported in the current computer vision literature at the time of undertaking this work. We decided to adopted relevance feedback to allow the visual appearance properties of relevant and non-relevant images returned in response to a query to be determined by example. Since limited training data is available when constructing a relevance classifier by means of user supplied relevance feedback, the intrinsically non-parametric machine learning algorithm ID3 (Iterative Dichotomiser 3) was selected to construct decision trees by means of dynamic rule induction. We believe that the above approach to capturing high-level visual concepts, encoded by means of meta-features specified by example through relevance feedback and decision tree classification, to support flexible trademark image retrieval and to be wholly novel. The retrieval performance the above system was compared with two other state-of-the-art image trademark retrieval systems: Artisan developed by Eakins (Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using relevance feedback, our system achieves higher average normalised precision than either of the systems developed by Eakins’ or Jiang. However, while our trademark image query and database set is based on an image dataset used by Eakins, we employed different numbers of images. It was not possible to access to the same query set and image database used in the evaluation of Jiang’s trademark iii image retrieval system evaluation. Despite these differences in evaluation methodology, our approach would appear to have the potential to improve retrieval effectiveness

    Strengthening China's technological capability

    Get PDF
    China is increasing its outlay on research and development and seeking to build an innovation system that will deliver quick results not just in absorbing technology but also in pushing the technological envelope. China's spending on R&D rose from 1.1 percent of GDP in 2000 to 1.3 percent of GDP in 2005. On a purchasing power parity basis, China's research outlay was among the world's highest, far greater than that of Brazil, India, or Mexico. Chinese firms are active in the fields of biotechnology, pharmaceuticals, alternative energy sources, and nanotechnology. This surge in spending has been parallel by a sharp increase in patent applications in China, with the bulk of the patents registered in the areas of electronics, information technology, and telecoms. However, of the almost 50,000 patents granted in China, nearly two-thirds were to nonresidents. This paper considers two questions that are especially important for China. First, how might China go about accelerating technology development? Second, what measures could most cost-effectively deliver the desired outcomes? It concludes that although the level of financing for R&D is certainly important, technological advance is closely keyed to absorptive capacity which is a function of the volume and quality of talent and the depth as well as the heterogeneity of research experience. It is also a function of how companies maximize the commercial benefits of research and development, and the coordination of research with production and marketing.Technology Industry,Tertiary Education,E-Business,ICT Policy and Strategies,Agricultural Knowledge&Information Systems
    • 

    corecore